Mostrar el registro sencillo del ítem
dc.contributor.author | Lizama, Carlos | es_ES |
dc.contributor.author | Murillo Arcila, Marina | es_ES |
dc.contributor.author | Trujillo Guillen, Macarena | es_ES |
dc.date.accessioned | 2023-06-20T18:01:45Z | |
dc.date.available | 2023-06-20T18:01:45Z | |
dc.date.issued | 2022-06-06 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/194426 | |
dc.description.abstract | [EN] In this article we propose an alternative formulation to model a thermal-optical coupled problem involving laser heating. We show that by using the Fractional Beer-Lambert Law (FBLL) instead of the Beer-Lambert Law (BLL) as the governing equation of the optical problem, the formulation of the laser heat source changes, along with consequently, the distribution of temperatures. Our theoretical findings apply to laser thermal keratoplasty (LTK), used to reduce diopters of hyperopia. We show that the FBLL offers a new approach for heat conduction modeling of laser heating, which is more flexible and could better fit the data in cases where the BLL approach does not fit the data well. Our results can be extended to laser heating of other biological tissues and in other general applications. Our findings imply a new insight to improve the accuracy of thermal models, since they involve a new formulation of the external heat source rather than the heat equation itself. | es_ES |
dc.description.sponsorship | C. Lizama is partially supported by ANID Project FONDECYT 1220036. M. MurilloArcila is supported by MCIN/AEI/10.13039/501100011033, Project PID2019-105011GBI00, and by Generalitat Valenciana, Project PROMETEU/2021/070. M. Trujillo is supported by Grant RTI2018- 094357-B-C21 funded by MCIN/AEI/10.13039/501100011033 (Spanish Ministerio de Ciencia, Innovacion y Universidades ¿ / Agencia Estatal de Investigacion) | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | American Institute of Mathematical Sciences | es_ES |
dc.relation.ispartof | AIMS Mathematics | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Partial differential equations | es_ES |
dc.subject | Fractional Beer-Lambert law | es_ES |
dc.subject | Laplace transform | es_ES |
dc.subject | Thermal therapies | es_ES |
dc.subject | Heat equation | es_ES |
dc.subject | Corneal laser irradiation | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Fractional Beer-Lambert law in laser heating of biological tissue | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3934/math.2022796 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105011GB-I00/ES/DINAMICA DE OPERADORES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//PROMETEO%2F2021%2F070//Análisis funcional, dinámica de operadores y aplicaciones/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094357-B-C21/ES/MODELADO Y EXPERIMENTACION PARA TERAPIAS ABLATIVAS INNOVADORAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FONDECYT//1220036/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//PID2019-105011GB-I00//DINAMICA DE OPERADORES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Arquitectura - Escola Tècnica Superior d'Arquitectura | es_ES |
dc.description.bibliographicCitation | Lizama, C.; Murillo Arcila, M.; Trujillo Guillen, M. (2022). Fractional Beer-Lambert law in laser heating of biological tissue. AIMS Mathematics. 14(4):14444-14459. https://doi.org/10.3934/math.2022796 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3934/math.2022796 | es_ES |
dc.description.upvformatpinicio | 14444 | es_ES |
dc.description.upvformatpfin | 14459 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 14 | es_ES |
dc.description.issue | 4 | es_ES |
dc.identifier.eissn | 2473-6988 | es_ES |
dc.relation.pasarela | S\467244 | es_ES |
dc.contributor.funder | GENERALITAT VALENCIANA | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Fondo Nacional de Desarrollo Científico y Tecnológico, Chile | es_ES |
dc.description.references | I. Abdelhalim, O. Hamdy, A. A. Hassan, S. H. Elnaby, Dependence of the heating effect on tissue absorption coefficient during corneal reshaping using different UV lasers: A numerical study, <i>Phys. Eng. Sci. Med.</i> <b>44</b> (2021), 221–227. <a href="https://doi.org/10.1007/s13246-021-00971-x" target="_blank">https://doi.org/10.1007/s13246-021-00971-x</a> | es_ES |
dc.description.references | A. E, Abouelregal, K. M. Khalil, W. W. Mohammed, D. Atta, Thermal vibration in rotating nanobeams with temperature–dependent due to exposure to laser irradiation, <i>AIMS Math.</i>, <b>7</b> (2022), 6128–6152. https://doi.org/10.3934/math.2022341 | es_ES |
dc.description.references | A. E. Abouelregal, A. Soleiman, H. M. Sedighi, K. M. Khalil, M. E. Nasr, Advanced thermoelastic heat conduction model with two fractional parameters and phase-lags, <i>Phys. Scr.</i>, <b>96</b> (2021), 124048. https://doi.org/10.1088/1402-4896/ac2f80 | es_ES |
dc.description.references | G. Casasanta, D. Ciani, R. Garra, Non-exponential extinction of radiation by fractional calculus modelling, <i>J. Quant. Spectrosc. Radiat. Transf.</i>, <b>113</b> (2012), 194–197. https://doi.org/10.1016/j.jqsrt.2011.10.003 | es_ES |
dc.description.references | D. Fuente, C. Lizama, J. F. Urchueguía, J. A. Conejero, Estimation of the light field inside photosynthetic microorganism cultures through Mittag-Leffler functions at depleted light conditions, <i>J. Quant. Spectrosc. Radiat. Transf.</i>, <b>204</b> (2018), 23–26. https://doi.org/10.1016/j.jqsrt.2017.08.012 | es_ES |
dc.description.references | M. Ghanbari, G. Rezazadeh, Thermo-vibrational analyses of skin tissue subjected to laser heating source in thermal therapy, <i>Sci. Rep.</i>, <b>11</b> (2021), 22633. https://doi.org/10.1038/s41598-021-02006-7 | es_ES |
dc.description.references | A. L. Gough-Palmer, W. M. Gedroyc, Laser ablation of hepatocellular carcinoma–a review, <i>World J. Gastroenterol.</i>, <b>14</b> (2008), 7170–7174. https://doi.org/10.3748/wjg.14.7170 | es_ES |
dc.description.references | P. Grigolini, A. Rocco, B. J. West, Fractional calculus as a macroscopic manifestation of randmoness, <i>Phys. Rev. E.</i>, <b>59</b> (1999), 3. https://doi.org/10.1103/PhysRevE.59.2603 | es_ES |
dc.description.references | C. Y. Hsiao, S. C. Yang, A. Alalaiwe, J. Y. Fang, Laser ablation and topical drug delivery: A review of recent advances, <i>Expert. Opin. Drug. Deliv.</i>, <b>16</b> (2019), 937–952. https://doi.org/10.1080/17425247.2019.1649655 | es_ES |
dc.description.references | R. Ibrahim, C. Ozel, On Multi-Order fractional differential operators in the unit disk, <i>Filomat</i>, <b>30</b> (2016), 73–81. https://doi.org/10.2298/FIL1601073I | es_ES |
dc.description.references | H. E. John, P. J. Mahaffey, Laser ablation and cryotherapy of melanoma metastases, <i>J. Surg. Oncol.</i>, <b>109</b> (2014), 296–300. https://doi.org/10.1002/jso.23488 | es_ES |
dc.description.references | A. Kabiri, M. R. Talaee, Thermal field and tissue damage analysis of moving laser in cancer thermal therapy, <i>Lasers Med. Sci.</i>, <b>36</b> (2021), 583–597. https://doi.org/10.1007/s10103-020-03070-7 | es_ES |
dc.description.references | D. Kim, H. Kim, Induction of apoptotic temperature in photothermal therapy under various heating conditions in multi-layered skin structure, <i>Int. J. Mol. Sci.</i>, <b>22</b> (2021), 11091. https://doi.org/10.3390/ijms222011091 | es_ES |
dc.description.references | A. N. Kochubei, Y. F. Luchko, Handbook of fractional calculus with applications, <b>1</b> (2019), 2019. | es_ES |
dc.description.references | A. Liemert, A. Kienle, Radiative transport equation for the Mittag-Leffler path length distribution, <i>J. Math. Phys.</i>, <b>58</b> (1017), 053511. https://doi.org/10.1063/1.4983682 | es_ES |
dc.description.references | A. Liemert, A. Kienle, Fractional radiative transport in the diffusion approximation, <i>J. Math. Chem.</i>, 2017. <a href="https://doi.org/10.1007/s10910-017-0792-2" target="_blank">https://doi.org/10.1007/s10910-017-0792-2</a> | es_ES |
dc.description.references | R. R. Letfullin, S. A. Szatkowski, Laser-induced thermal ablation of cancerous cell organelles, <i>Ther. Deliv.</i>, <b>8</b> (2017), 501–509. https://doi.org/10.4155/tde-2016-0087 | es_ES |
dc.description.references | C. Lizama, M. Trujillo, The time fractional approach for the modeling of thermal therapies: Temperature analysis in laser irradiation, <i>Int. J. Heat Mass. Transfer.</i>, <b>154</b> (2020), 119677. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119677 | es_ES |
dc.description.references | E. Luther, S. Mansour, N. Echeverry, D. McCarthy, D. G. Eichberg, A. Shah, et al., Laser ablation for cerebral metastases, <i>Neurosurg. Clin. N. Am.</i>, <b>31</b> (2020), 537–547. https://doi.org/10.1016/j.nec.2020.06.004 | es_ES |
dc.description.references | F. Manns, D. Borja, J. M. A. Parel, W. E. Smiddy, W. Culbertson, Semianalytical thermal model for subablative laser heating of homogeneous nonperfused biological tissue: Application to laser thermokeratoplasty, <i>J. Biomed. Optics.</i>, 2003 | es_ES |
dc.description.references | <b>8</b> (2003), 288-297. <a href="https://doi.org/10.1117/1.1560644" target="_blank">https://doi.org/10.1117/1.1560644</a> | es_ES |
dc.description.references | A. Narasimhan, K. K. Jha, Bio-heat transfer simulation of retinal laser irradiation, <i>Int. J. Numer. Method Biomed. Eng.</i>, <i>28</i> (2012), 547–559. <a href="https://doi.org/10.1002/cnm.1489" target="_blank">https://doi.org/10.1002/cnm.1489</a> | es_ES |
dc.description.references | P. Ooshiar, A. Moradi, B. Khezry, Bioheat transfer analysis of biological tissues induced by laser irradiation, <i>Int. J. Thermal. Sci.</i>, <b>90</b> (2015). <a href="https://doi.org/10.1016/j.ijthermalsci.2014.12.004" target="_blank">https://doi.org/10.1016/j.ijthermalsci.2014.12.004</a> | es_ES |
dc.description.references | I. Oshina, J. Spigulis, Beer–Lambert law for optical tissue diagnostics: Current state of the art and the main limitations, <i>J. Biomed. Optics.</i>, <b>26</b> (2021), 100901. https://doi.org/10.1117/1.JBO.26.10.100901 | es_ES |
dc.description.references | A. D. Poularikas, The Handbook of Formulas and Tables for Signal Processing, CRC Press LLC, 1999. | es_ES |
dc.description.references | E. V. Ross, F. P. Sajben, J. Hsia, D. Barnette, C. H. Miller, J. R. McKinlay, Nonablative skin remodeling: Selective dermal heating with a mid-infrared laser and contact cooling combination, <i>Lasers Surg. Med.</i>, <b>26</b> (2000), 186–195. https://doi.org/10.1002/(SICI)1096-9101(2000)26:2<186::AID-LSM9>3.0.CO;2-I | es_ES |
dc.description.references | F. Rossi, R. Pini, L. Menabuoni, Experimental and model analysis on the temperature dynamics during diode laser welding of the cornea, <i>J. Biomed. Opt.</i>, <b>12</b> (2007), 014031. https://doi.org/10.1117/1.2437156 | es_ES |
dc.description.references | M. Şen, A. E. Çalık, H. Ertik, Determination of half-value thickness of aluminum foils for different beta sources by using fractional calculus, <i>Nucl. Instrum. Methods Phys. Res.</i>, <b>335</b> (2014), 78–84. https://doi.org/10.1016/j.nimb.2014.06.005 | es_ES |
dc.description.references | V. Tramontana, G. Casasanta, R. Garra, A. M. Iannarelli, An application of Wright functions to the photon propagation, <i>J. Quant. Spectrosc. Radiat. Transf.</i>, <b>124</b> (2013), 45–48. https://doi.org/10.1016/j.jqsrt.2013.03.008 | es_ES |
dc.description.references | M. Trujillo, M. J. Rivera, J. A. Molina López, E. Berjano, Analytical thermal–optic model for laser heating of biological tissue using the hyperbolic heat transfer equation, <i>Math. Med. Biol.</i>, <b>26</b> (2009), 187–200. https://doi.org/10.1093/imammb/dqp002 | es_ES |
dc.description.references | M. E. Vuylsteke, S. R. Mordon, Endovenous laser ablation: A review of mechanisms of action, <i>Ann. Vasc. Surg.</i>, <b>26</b> (2012), 424–433. https://doi.org/10.1016/j.avsg.2011.05.037 | es_ES |
dc.description.references | J. N. Webb, H. Zhang, A. Sinha Roy, J. B. Randleman, G. Scarcelli, Detecting Mechanical Anisotropy of the Cornea Using Brillouin Microscopy, <i>Transl. Vis. Sci. Technol.</i>, <b>9</b> (2020), 26. https://doi.org/10.1167/tvst.9.7.26 | es_ES |
dc.description.references | K. Zhang, Y. Zhang, J. Li, Q. Wang, A contrastive analysis of laser heating between the human and guinea pig cochlea by numerical simulations, <i>Biomed Eng Online.</i>, <b>15</b> (2016), 59. https://doi.org/10.1186/s12938-016-0190-1 | es_ES |