- -

Fractional Beer-Lambert law in laser heating of biological tissue

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Fractional Beer-Lambert law in laser heating of biological tissue

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Lizama, Carlos es_ES
dc.contributor.author Murillo Arcila, Marina es_ES
dc.contributor.author Trujillo Guillen, Macarena es_ES
dc.date.accessioned 2023-06-20T18:01:45Z
dc.date.available 2023-06-20T18:01:45Z
dc.date.issued 2022-06-06 es_ES
dc.identifier.uri http://hdl.handle.net/10251/194426
dc.description.abstract [EN] In this article we propose an alternative formulation to model a thermal-optical coupled problem involving laser heating. We show that by using the Fractional Beer-Lambert Law (FBLL) instead of the Beer-Lambert Law (BLL) as the governing equation of the optical problem, the formulation of the laser heat source changes, along with consequently, the distribution of temperatures. Our theoretical findings apply to laser thermal keratoplasty (LTK), used to reduce diopters of hyperopia. We show that the FBLL offers a new approach for heat conduction modeling of laser heating, which is more flexible and could better fit the data in cases where the BLL approach does not fit the data well. Our results can be extended to laser heating of other biological tissues and in other general applications. Our findings imply a new insight to improve the accuracy of thermal models, since they involve a new formulation of the external heat source rather than the heat equation itself. es_ES
dc.description.sponsorship C. Lizama is partially supported by ANID Project FONDECYT 1220036. M. MurilloArcila is supported by MCIN/AEI/10.13039/501100011033, Project PID2019-105011GBI00, and by Generalitat Valenciana, Project PROMETEU/2021/070. M. Trujillo is supported by Grant RTI2018- 094357-B-C21 funded by MCIN/AEI/10.13039/501100011033 (Spanish Ministerio de Ciencia, Innovacion y Universidades ¿ / Agencia Estatal de Investigacion) es_ES
dc.language Inglés es_ES
dc.publisher American Institute of Mathematical Sciences es_ES
dc.relation.ispartof AIMS Mathematics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Partial differential equations es_ES
dc.subject Fractional Beer-Lambert law es_ES
dc.subject Laplace transform es_ES
dc.subject Thermal therapies es_ES
dc.subject Heat equation es_ES
dc.subject Corneal laser irradiation es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Fractional Beer-Lambert law in laser heating of biological tissue es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3934/math.2022796 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105011GB-I00/ES/DINAMICA DE OPERADORES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//PROMETEO%2F2021%2F070//Análisis funcional, dinámica de operadores y aplicaciones/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094357-B-C21/ES/MODELADO Y EXPERIMENTACION PARA TERAPIAS ABLATIVAS INNOVADORAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FONDECYT//1220036/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//PID2019-105011GB-I00//DINAMICA DE OPERADORES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Arquitectura - Escola Tècnica Superior d'Arquitectura es_ES
dc.description.bibliographicCitation Lizama, C.; Murillo Arcila, M.; Trujillo Guillen, M. (2022). Fractional Beer-Lambert law in laser heating of biological tissue. AIMS Mathematics. 14(4):14444-14459. https://doi.org/10.3934/math.2022796 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3934/math.2022796 es_ES
dc.description.upvformatpinicio 14444 es_ES
dc.description.upvformatpfin 14459 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 14 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 2473-6988 es_ES
dc.relation.pasarela S\467244 es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Fondo Nacional de Desarrollo Científico y Tecnológico, Chile es_ES
dc.description.references I. Abdelhalim, O. Hamdy, A. A. Hassan, S. H. Elnaby, Dependence of the heating effect on tissue absorption coefficient during corneal reshaping using different UV lasers: A numerical study, <i>Phys. Eng. Sci. Med.</i> <b>44</b> (2021), 221–227. <a href="https://doi.org/10.1007/s13246-021-00971-x" target="_blank">https://doi.org/10.1007/s13246-021-00971-x</a> es_ES
dc.description.references A. E, Abouelregal, K. M. Khalil, W. W. Mohammed, D. Atta, Thermal vibration in rotating nanobeams with temperature–dependent due to exposure to laser irradiation, <i>AIMS Math.</i>, <b>7</b> (2022), 6128–6152. https://doi.org/10.3934/math.2022341 es_ES
dc.description.references A. E. Abouelregal, A. Soleiman, H. M. Sedighi, K. M. Khalil, M. E. Nasr, Advanced thermoelastic heat conduction model with two fractional parameters and phase-lags, <i>Phys. Scr.</i>, <b>96</b> (2021), 124048. https://doi.org/10.1088/1402-4896/ac2f80 es_ES
dc.description.references G. Casasanta, D. Ciani, R. Garra, Non-exponential extinction of radiation by fractional calculus modelling, <i>J. Quant. Spectrosc. Radiat. Transf.</i>, <b>113</b> (2012), 194–197. https://doi.org/10.1016/j.jqsrt.2011.10.003 es_ES
dc.description.references D. Fuente, C. Lizama, J. F. Urchueguía, J. A. Conejero, Estimation of the light field inside photosynthetic microorganism cultures through Mittag-Leffler functions at depleted light conditions, <i>J. Quant. Spectrosc. Radiat. Transf.</i>, <b>204</b> (2018), 23–26. https://doi.org/10.1016/j.jqsrt.2017.08.012 es_ES
dc.description.references M. Ghanbari, G. Rezazadeh, Thermo-vibrational analyses of skin tissue subjected to laser heating source in thermal therapy, <i>Sci. Rep.</i>, <b>11</b> (2021), 22633. https://doi.org/10.1038/s41598-021-02006-7 es_ES
dc.description.references A. L. Gough-Palmer, W. M. Gedroyc, Laser ablation of hepatocellular carcinoma–a review, <i>World J. Gastroenterol.</i>, <b>14</b> (2008), 7170–7174. https://doi.org/10.3748/wjg.14.7170 es_ES
dc.description.references P. Grigolini, A. Rocco, B. J. West, Fractional calculus as a macroscopic manifestation of randmoness, <i>Phys. Rev. E.</i>, <b>59</b> (1999), 3. https://doi.org/10.1103/PhysRevE.59.2603 es_ES
dc.description.references C. Y. Hsiao, S. C. Yang, A. Alalaiwe, J. Y. Fang, Laser ablation and topical drug delivery: A review of recent advances, <i>Expert. Opin. Drug. Deliv.</i>, <b>16</b> (2019), 937–952. https://doi.org/10.1080/17425247.2019.1649655 es_ES
dc.description.references R. Ibrahim, C. Ozel, On Multi-Order fractional differential operators in the unit disk, <i>Filomat</i>, <b>30</b> (2016), 73–81. https://doi.org/10.2298/FIL1601073I es_ES
dc.description.references H. E. John, P. J. Mahaffey, Laser ablation and cryotherapy of melanoma metastases, <i>J. Surg. Oncol.</i>, <b>109</b> (2014), 296–300. https://doi.org/10.1002/jso.23488 es_ES
dc.description.references A. Kabiri, M. R. Talaee, Thermal field and tissue damage analysis of moving laser in cancer thermal therapy, <i>Lasers Med. Sci.</i>, <b>36</b> (2021), 583–597. https://doi.org/10.1007/s10103-020-03070-7 es_ES
dc.description.references D. Kim, H. Kim, Induction of apoptotic temperature in photothermal therapy under various heating conditions in multi-layered skin structure, <i>Int. J. Mol. Sci.</i>, <b>22</b> (2021), 11091. https://doi.org/10.3390/ijms222011091 es_ES
dc.description.references A. N. Kochubei, Y. F. Luchko, Handbook of fractional calculus with applications, <b>1</b> (2019), 2019. es_ES
dc.description.references A. Liemert, A. Kienle, Radiative transport equation for the Mittag-Leffler path length distribution, <i>J. Math. Phys.</i>, <b>58</b> (1017), 053511. https://doi.org/10.1063/1.4983682 es_ES
dc.description.references A. Liemert, A. Kienle, Fractional radiative transport in the diffusion approximation, <i>J. Math. Chem.</i>, 2017. <a href="https://doi.org/10.1007/s10910-017-0792-2" target="_blank">https://doi.org/10.1007/s10910-017-0792-2</a> es_ES
dc.description.references R. R. Letfullin, S. A. Szatkowski, Laser-induced thermal ablation of cancerous cell organelles, <i>Ther. Deliv.</i>, <b>8</b> (2017), 501–509. https://doi.org/10.4155/tde-2016-0087 es_ES
dc.description.references C. Lizama, M. Trujillo, The time fractional approach for the modeling of thermal therapies: Temperature analysis in laser irradiation, <i>Int. J. Heat Mass. Transfer.</i>, <b>154</b> (2020), 119677. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119677 es_ES
dc.description.references E. Luther, S. Mansour, N. Echeverry, D. McCarthy, D. G. Eichberg, A. Shah, et al., Laser ablation for cerebral metastases, <i>Neurosurg. Clin. N. Am.</i>, <b>31</b> (2020), 537–547. https://doi.org/10.1016/j.nec.2020.06.004 es_ES
dc.description.references F. Manns, D. Borja, J. M. A. Parel, W. E. Smiddy, W. Culbertson, Semianalytical thermal model for subablative laser heating of homogeneous nonperfused biological tissue: Application to laser thermokeratoplasty, <i>J. Biomed. Optics.</i>, 2003 es_ES
dc.description.references <b>8</b> (2003), 288-297. <a href="https://doi.org/10.1117/1.1560644" target="_blank">https://doi.org/10.1117/1.1560644</a> es_ES
dc.description.references A. Narasimhan, K. K. Jha, Bio-heat transfer simulation of retinal laser irradiation, <i>Int. J. Numer. Method Biomed. Eng.</i>, <i>28</i> (2012), 547–559. <a href="https://doi.org/10.1002/cnm.1489" target="_blank">https://doi.org/10.1002/cnm.1489</a> es_ES
dc.description.references P. Ooshiar, A. Moradi, B. Khezry, Bioheat transfer analysis of biological tissues induced by laser irradiation, <i>Int. J. Thermal. Sci.</i>, <b>90</b> (2015). <a href="https://doi.org/10.1016/j.ijthermalsci.2014.12.004" target="_blank">https://doi.org/10.1016/j.ijthermalsci.2014.12.004</a> es_ES
dc.description.references I. Oshina, J. Spigulis, Beer–Lambert law for optical tissue diagnostics: Current state of the art and the main limitations, <i>J. Biomed. Optics.</i>, <b>26</b> (2021), 100901. https://doi.org/10.1117/1.JBO.26.10.100901 es_ES
dc.description.references A. D. Poularikas, The Handbook of Formulas and Tables for Signal Processing, CRC Press LLC, 1999. es_ES
dc.description.references E. V. Ross, F. P. Sajben, J. Hsia, D. Barnette, C. H. Miller, J. R. McKinlay, Nonablative skin remodeling: Selective dermal heating with a mid-infrared laser and contact cooling combination, <i>Lasers Surg. Med.</i>, <b>26</b> (2000), 186–195. https://doi.org/10.1002/(SICI)1096-9101(2000)26:2&lt;186::AID-LSM9&gt;3.0.CO;2-I es_ES
dc.description.references F. Rossi, R. Pini, L. Menabuoni, Experimental and model analysis on the temperature dynamics during diode laser welding of the cornea, <i>J. Biomed. Opt.</i>, <b>12</b> (2007), 014031. https://doi.org/10.1117/1.2437156 es_ES
dc.description.references M. Şen, A. E. Çalık, H. Ertik, Determination of half-value thickness of aluminum foils for different beta sources by using fractional calculus, <i>Nucl. Instrum. Methods Phys. Res.</i>, <b>335</b> (2014), 78–84. https://doi.org/10.1016/j.nimb.2014.06.005 es_ES
dc.description.references V. Tramontana, G. Casasanta, R. Garra, A. M. Iannarelli, An application of Wright functions to the photon propagation, <i>J. Quant. Spectrosc. Radiat. Transf.</i>, <b>124</b> (2013), 45–48. https://doi.org/10.1016/j.jqsrt.2013.03.008 es_ES
dc.description.references M. Trujillo, M. J. Rivera, J. A. Molina López, E. Berjano, Analytical thermal–optic model for laser heating of biological tissue using the hyperbolic heat transfer equation, <i>Math. Med. Biol.</i>, <b>26</b> (2009), 187–200. https://doi.org/10.1093/imammb/dqp002 es_ES
dc.description.references M. E. Vuylsteke, S. R. Mordon, Endovenous laser ablation: A review of mechanisms of action, <i>Ann. Vasc. Surg.</i>, <b>26</b> (2012), 424–433. https://doi.org/10.1016/j.avsg.2011.05.037 es_ES
dc.description.references J. N. Webb, H. Zhang, A. Sinha Roy, J. B. Randleman, G. Scarcelli, Detecting Mechanical Anisotropy of the Cornea Using Brillouin Microscopy, <i>Transl. Vis. Sci. Technol.</i>, <b>9</b> (2020), 26. https://doi.org/10.1167/tvst.9.7.26 es_ES
dc.description.references K. Zhang, Y. Zhang, J. Li, Q. Wang, A contrastive analysis of laser heating between the human and guinea pig cochlea by numerical simulations, <i>Biomed Eng Online.</i>, <b>15</b> (2016), 59. https://doi.org/10.1186/s12938-016-0190-1 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem