- -

Thermo-fluid dynamics modelling of steam electrolysis in fully-assembled tubular high-temperature proton-conducting cells

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Thermo-fluid dynamics modelling of steam electrolysis in fully-assembled tubular high-temperature proton-conducting cells

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Catalán-Martínez, David es_ES
dc.contributor.author Navarrete Algaba, Laura es_ES
dc.contributor.author Tarach, Mateusz es_ES
dc.contributor.author Santos-Blasco, J. es_ES
dc.contributor.author Vøllestad, E. es_ES
dc.contributor.author Norby, T. es_ES
dc.contributor.author Budd, M.I. es_ES
dc.contributor.author Veenstra, P. es_ES
dc.contributor.author Serra Alfaro, José Manuel es_ES
dc.date.accessioned 2023-06-21T18:01:42Z
dc.date.available 2023-06-21T18:01:42Z
dc.date.issued 2022-07-30 es_ES
dc.identifier.issn 0360-3199 es_ES
dc.identifier.uri http://hdl.handle.net/10251/194459
dc.description.abstract [EN] Electrolysis based on renewable energies offers a promising carbon-free solution for hydrogen generation and storage. The recent developments of proton ceramic electrolysis cells operating at intermediate temperatures bear promise of superior energy efficiency compared to oxide ion conducting electrolytes. Here, a proton ceramic Single Engineering Unit (SEU) design is optimized for steam electrolysis using a computational fluid dynamics (CFD) model implemented in a COMSOL Multiphysics software. The SEU is an all-in-one tubular cell arrangement that constitutes the smallest electrolysis unit and enables efficient, adaptable pressurized hydrogen generation. The parametrical modelling study is conducted for two adiabatic operation scenarios with distinct steam conversion rates and tested for multiple key parameters, namely internal and external chamber pressures and inlet stream temperature. The modelling results show that low steam conversions enable operation at higher current densities and that the thermoneutral voltage for a fixed steam conversion is highly sensitive to the process conditions and operation modes. The increment of the pressure of the generated hydrogen implies a reduced production rate at thermoneutral voltage, although it can be compensated with an enhanced steam pressure or a reduced inlet temperature. Additionally, the introduction of a porous medium as the SEU current collector in the steam chamber enhances heat transport within this chamber. The area specific resistance of the system determines the current density, enforcing an adaption of the area of the electrolyser to satisfy the target hydrogen production and energy efficiency. The resulting proposed SEU design and adapted operational parameters allow effective delivery of pressurized dry hydrogen for a wide range of conditions and applications es_ES
dc.description.sponsorship The work leading to these results has received funding from Spanish Government (RTI2018-102161 grant) and from Fuel Cells and Hydrogen 2 Joint Undertaking under grant agreement 779486 (`GAMER'). This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme, Hydrogen Europe and Hydrogen Europe research. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof International Journal of Hydrogen Energy es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Ceramic proton conductor es_ES
dc.subject CFD es_ES
dc.subject Tubular cell es_ES
dc.subject Water electrolysis es_ES
dc.subject Modelling es_ES
dc.title Thermo-fluid dynamics modelling of steam electrolysis in fully-assembled tubular high-temperature proton-conducting cells es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.ijhydene.2022.06.112 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-102161-B-I00/ES/CONVERSION DIRECTA DE CO2 EN PORTADORES DE ENERGIA QUIMICA UTILIZANDO REACTORES ELECTROCATALITICOS DE MEMBRANA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/779486/EU es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Catalán-Martínez, D.; Navarrete Algaba, L.; Tarach, M.; Santos-Blasco, J.; Vøllestad, E.; Norby, T.; Budd, M.... (2022). Thermo-fluid dynamics modelling of steam electrolysis in fully-assembled tubular high-temperature proton-conducting cells. International Journal of Hydrogen Energy. 47(65):27787-27799. https://doi.org/10.1016/j.ijhydene.2022.06.112 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.ijhydene.2022.06.112 es_ES
dc.description.upvformatpinicio 27787 es_ES
dc.description.upvformatpfin 27799 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 47 es_ES
dc.description.issue 65 es_ES
dc.relation.pasarela S\488198 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Universitat Politècnica de València es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem