Mostrar el registro sencillo del ítem
dc.contributor.author | López Alfonso, Salvador | es_ES |
dc.contributor.author | López Pellicer, Manuel | es_ES |
dc.contributor.author | Moll López, Santiago Emmanuel | es_ES |
dc.contributor.author | Sánchez Ruiz, Luis Manuel | es_ES |
dc.date.accessioned | 2023-06-21T18:02:19Z | |
dc.date.available | 2023-06-21T18:02:19Z | |
dc.date.issued | 2022-08 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/194479 | |
dc.description.abstract | [EN] Let A be an algebra of subsets of a set W and ba(A) the Banach space of bounded finitely additive scalar-valued measures on A endowed with the variation norm. A subset B of A is a Nikodým set for ba(A) if each countable B-pointwise bounded subset M of ba(A) is norm bounded. A subset B of A is a Grothendieck set for ba(A) if for each bounded sequence in ba(A) the B-pointwise convergence on ba(A) implies its ba(A)*-pointwise convergence on ba(A). A subset B of an algebra A is a strong-Nikodým (Grothendieck) set for ba(A) if in each increasing covering {B_n : n \in N} of B there exists B_m which is a Nikodým (Grothendieck) set for ba(A). The answer of the following open question for an algebra A of subsets of a set W, proposed by Valdivia in 2013, has not yet been found: Is it true that if A is a Nikodým set for ba(A) then A is a strong Nikodým set for ba(A)? In this paper we surveyed some results related to this Valdivia¿s open question, as well as the corresponding problem for strong Grothendieck sets. The new Propositions 1 and 3 provide more simplified proofs, particularly in their application to Theorems 1 and 2, which were the main results surveyed. Moreover, the proofs of almost all other propositions are wholly or partially original. | es_ES |
dc.description.sponsorship | This research was funded by grant PGC2018-094431-B-I00 of Ministry of Science, Innovation and Universities of Spain for the second named author. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Mathematics | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Grothendieck set | es_ES |
dc.subject | Nikodým set | es_ES |
dc.subject | Strong Grothendieck set | es_ES |
dc.subject | Strong Nikodým set | es_ES |
dc.subject | Algebra of subsets | es_ES |
dc.subject | Bounded scalar measure | es_ES |
dc.subject | $sigma$-algebra | es_ES |
dc.subject | Variation norm | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.subject.classification | CONSTRUCCIONES ARQUITECTONICAS | es_ES |
dc.title | A Survey on Valdivia Open Question on Nikodým Sets | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/math10152660 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-094431-B-I00/ES/ESPACIOS DE FUNCIONES: FUNCIONES ANALITICAS Y OPERADORES DE COMPOSICION. RENORMAMIENTOS Y TOPOLOGIA DESCRIPTIVA/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Arquitectura - Escola Tècnica Superior d'Arquitectura | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny | es_ES |
dc.description.bibliographicCitation | López Alfonso, S.; López Pellicer, M.; Moll López, SE.; Sánchez Ruiz, LM. (2022). A Survey on Valdivia Open Question on Nikodým Sets. Mathematics. 10(15):1-11. https://doi.org/10.3390/math10152660 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/math10152660 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 11 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.description.issue | 15 | es_ES |
dc.identifier.eissn | 2227-7390 | es_ES |
dc.relation.pasarela | S\470355 | es_ES |
dc.contributor.funder | MINISTERIO DE CIENCIA, INNOVACIÓN y UNIVERSIDADES | es_ES |