- -

Accurate Approximation of the Matrix Hyperbolic Cosine Using Bernoulli Polynomials

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Accurate Approximation of the Matrix Hyperbolic Cosine Using Bernoulli Polynomials

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Alonso Abalos, José Miguel es_ES
dc.contributor.author Ibáñez González, Jacinto Javier es_ES
dc.contributor.author Defez Candel, Emilio es_ES
dc.contributor.author Alvarruiz Bermejo, Fernando es_ES
dc.date.accessioned 2023-06-21T18:02:23Z
dc.date.available 2023-06-21T18:02:23Z
dc.date.issued 2023-02 es_ES
dc.identifier.uri http://hdl.handle.net/10251/194483
dc.description.abstract [EN] This paper presents three different alternatives to evaluate the matrix hyperbolic cosine using Bernoulli matrix polynomials, comparing them from the point of view of accuracy and computational complexity. The first two alternatives are derived from two different Bernoulli series expansions of the matrix hyperbolic cosine, while the third one is based on the approximation of the matrix exponential by means of Bernoulli matrix polynomials. We carry out an analysis of the absolute and relative forward errors incurred in the approximations, deriving corresponding suitable values for the matrix polynomial degree and the scaling factor to be used. Finally, we use a comprehensive matrix testbed to perform a thorough comparison of the alternative approximations, also taking into account other current state-of-the-art approaches. The most accurate and efficient options are identified as results. es_ES
dc.description.sponsorship This research was supported by the Vicerrectorado de Investigacion de la Universitat Politecnica de Valencia (PAID-11-21). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Mathematics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Bernoulli matrix polynomials es_ES
dc.subject Matrix hyperbolic cosine es_ES
dc.subject Matrix functions approximation es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.subject.classification CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL es_ES
dc.title Accurate Approximation of the Matrix Hyperbolic Cosine Using Bernoulli Polynomials es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/math11030520 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV-VIN//AYUDA PAID-11-21//Novel High-Performance Methods for the Computation of Matrix Functions and Their Applications in Engineering (HPCFUNMAT) - Nuevos métodos de Altas Prestaciones para el Cálculo de Funciones de Matrices y sus Aplicaciones en ingeniería/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos - Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.description.bibliographicCitation Alonso Abalos, JM.; Ibáñez González, JJ.; Defez Candel, E.; Alvarruiz Bermejo, F. (2023). Accurate Approximation of the Matrix Hyperbolic Cosine Using Bernoulli Polynomials. Mathematics. 11(3):1-22. https://doi.org/10.3390/math11030520 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/math11030520 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 22 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 3 es_ES
dc.identifier.eissn 2227-7390 es_ES
dc.relation.pasarela S\481842 es_ES
dc.contributor.funder UNIVERSIDAD POLITECNICA DE VALENCIA es_ES
dc.subject.ods 12.- Garantizar las pautas de consumo y de producción sostenibles es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem