Mostrar el registro sencillo del ítem
dc.contributor.author | Alonso Abalos, José Miguel | es_ES |
dc.contributor.author | Ibáñez González, Jacinto Javier | es_ES |
dc.contributor.author | Defez Candel, Emilio | es_ES |
dc.contributor.author | Alvarruiz Bermejo, Fernando | es_ES |
dc.date.accessioned | 2023-06-21T18:02:23Z | |
dc.date.available | 2023-06-21T18:02:23Z | |
dc.date.issued | 2023-02 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/194483 | |
dc.description.abstract | [EN] This paper presents three different alternatives to evaluate the matrix hyperbolic cosine using Bernoulli matrix polynomials, comparing them from the point of view of accuracy and computational complexity. The first two alternatives are derived from two different Bernoulli series expansions of the matrix hyperbolic cosine, while the third one is based on the approximation of the matrix exponential by means of Bernoulli matrix polynomials. We carry out an analysis of the absolute and relative forward errors incurred in the approximations, deriving corresponding suitable values for the matrix polynomial degree and the scaling factor to be used. Finally, we use a comprehensive matrix testbed to perform a thorough comparison of the alternative approximations, also taking into account other current state-of-the-art approaches. The most accurate and efficient options are identified as results. | es_ES |
dc.description.sponsorship | This research was supported by the Vicerrectorado de Investigacion de la Universitat Politecnica de Valencia (PAID-11-21). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Mathematics | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Bernoulli matrix polynomials | es_ES |
dc.subject | Matrix hyperbolic cosine | es_ES |
dc.subject | Matrix functions approximation | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.subject.classification | CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL | es_ES |
dc.title | Accurate Approximation of the Matrix Hyperbolic Cosine Using Bernoulli Polynomials | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/math11030520 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV-VIN//AYUDA PAID-11-21//Novel High-Performance Methods for the Computation of Matrix Functions and Their Applications in Engineering (HPCFUNMAT) - Nuevos métodos de Altas Prestaciones para el Cálculo de Funciones de Matrices y sus Aplicaciones en ingeniería/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos - Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica | es_ES |
dc.description.bibliographicCitation | Alonso Abalos, JM.; Ibáñez González, JJ.; Defez Candel, E.; Alvarruiz Bermejo, F. (2023). Accurate Approximation of the Matrix Hyperbolic Cosine Using Bernoulli Polynomials. Mathematics. 11(3):1-22. https://doi.org/10.3390/math11030520 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/math11030520 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 22 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 11 | es_ES |
dc.description.issue | 3 | es_ES |
dc.identifier.eissn | 2227-7390 | es_ES |
dc.relation.pasarela | S\481842 | es_ES |
dc.contributor.funder | UNIVERSIDAD POLITECNICA DE VALENCIA | es_ES |
dc.subject.ods | 12.- Garantizar las pautas de consumo y de producción sostenibles | es_ES |