- -

Improvements in tribological and anticorrosion performance of porous Ti-6Al-4V via PEO coating

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Improvements in tribological and anticorrosion performance of porous Ti-6Al-4V via PEO coating

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Garcia-Cabezón, C. es_ES
dc.contributor.author Rodríguez-Méndez, M.L. es_ES
dc.contributor.author Amigó, Vicente es_ES
dc.contributor.author Bayón, R. es_ES
dc.contributor.author Salvo-Comino, C. es_ES
dc.contributor.author García-Hernández, C. es_ES
dc.contributor.author Martin-Pedrosa, F. es_ES
dc.date.accessioned 2023-06-22T18:01:44Z
dc.date.available 2023-06-22T18:01:44Z
dc.date.issued 2021-10 es_ES
dc.identifier.issn 2223-7690 es_ES
dc.identifier.uri http://hdl.handle.net/10251/194491
dc.description.abstract [EN] Medical implants manufactured using biomaterial Ti-6Al-4V exhibit some disadvantages. Its higher elastic modulus than that of natural bone can cause stress shielding problems. This can be avoided using Ti-6Al-4V with pores in the implant structure. However, poor corrosion and tribocorrosion behaviors are yielded because of the large area exposed to the medium. To mitigate both issues, coating technologies can be applied. The plasma electrolytic oxidation (PEO) process is a cost-effective process that has been used successfully in nonporous Ti alloys. In this study, two PEO coatings with different amounts of Ca/P are used. However, reports regarding their application in porous materials are scarce. The effects of PEO treatments on corrosion and tribocorrosion in Ti-6Al-4V powder metallurgy are analyzed herein. The porous materials provide an efficient surface for PEO coatings, as demonstrated via scanning electron microscopy (SEM) and atomic force microscopy (AFM), and the porosity of the substrates improved the adherence of the coatings. The corrosion resistance measured via electrochemical impedance spectroscopy confirmed the beneficial effect of the coatings, particularly for long exposure time. The lower roughness, small pore size, and more compact film observed in the PEO-Ca/P sample resulted in favorable tribological and corrosion properties. es_ES
dc.description.sponsorship Financial support by Ministry of Education and Science (RTI2018-097990-B-I00) and the Junta de Castilla y Leon (VA275P18 and VA044G19) is gratefully acknowledged. es_ES
dc.language Inglés es_ES
dc.publisher SpringerOpen es_ES
dc.relation.ispartof Friction es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Ti-based alloys es_ES
dc.subject Corrosion es_ES
dc.subject Tribocorrosion es_ES
dc.subject Surface modification es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.title Improvements in tribological and anticorrosion performance of porous Ti-6Al-4V via PEO coating es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s40544-020-0480-2 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-097990-B-I00/ES/DESARROLLO DE UN SISTEMA MULTISENSOR NANOESTRUCTURADO PORTATIL PARA ANALSIS DE LECHE: EN EL CAMINO HACIA LA INDUSTRIA 4.0/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/JCYL//VA275P18/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/JCYL//VA044G19/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.description.bibliographicCitation Garcia-Cabezón, C.; Rodríguez-Méndez, M.; Amigó, V.; Bayón, R.; Salvo-Comino, C.; García-Hernández, C.; Martin-Pedrosa, F. (2021). Improvements in tribological and anticorrosion performance of porous Ti-6Al-4V via PEO coating. Friction. 9(5):1303-1318. https://doi.org/10.1007/s40544-020-0480-2 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s40544-020-0480-2 es_ES
dc.description.upvformatpinicio 1303 es_ES
dc.description.upvformatpfin 1318 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 5 es_ES
dc.relation.pasarela S\447199 es_ES
dc.contributor.funder Junta de Castilla y León es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Geetha M, Singh A K, Asokamani R, Gogia A K. Ti based biomaterials, the ultimate choice for orthopaedic implants—A review. Prog Mater Sci 54(3): 397–425 (2009) es_ES
dc.description.references Martin F, García C, Blanco Y. Influence of residual porosity on the dry and lubricated sliding wear of a powder metallurgy austenitic stainless steel. Wear 328–329: 1–7 (2015) es_ES
dc.description.references Liu X, Chu P, Ding C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater Sci Eng: R: Rep 47(3–4): 49–121 (2004) es_ES
dc.description.references Huiskes R, Weinans H, van Rietbergen B. The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials. Clin Orthop Relat Res (274): 124–134 (1992) es_ES
dc.description.references Segal V M. Equal channel angular extrusion: From macromechanics to structure formation. Mater Sci Eng: A 271(1–2): 322–333 (1999) es_ES
dc.description.references Shbeh M M, Goodall R. Open celled porous titanium. Adv Eng Mater 19(11): 1600664 (2017) es_ES
dc.description.references Zhao Z W, Zhang G, Li H G. Preparation of calcium phosphate coating on pure titanium substrate by electro-deposition method. J Central South Univ Technol 11(2): 147–151 (2004) es_ES
dc.description.references Thull R, Grant D. Physical and chemical vapor deposition and plasma assisted techniques for coating titanium. In Titanium in Medicine. Brunette D M, Tengvall P, Textor M, Thomsen P, Eds. Berlin: Springer, 2001: 283–341. es_ES
dc.description.references Matykina E, Skeldon P, Thompson G E. Fundamental and practical evaluations of PEO coatings of titanium. Int Heat Treat Surf Eng 3(1–2): 45–51 (2009) es_ES
dc.description.references Ceschini L, Lanzoni E, Martini C, Prandstraller D, Sambogna G. Comparison of dry sliding friction and wear of Ti6Al4V alloy treated by plasma electrolytic oxidation and PVD coating. Wear 264(1–2): 86–95 (2008) es_ES
dc.description.references Zhang X L, Jiang Z H, Yao Z P, Wu Z D. Electrochemical study of growth behaviour of plasma electrolytic oxidation coating on Ti6Al4V: Effects of the additive. Corros Sci 52(10): 3465–3473 (2010) es_ES
dc.description.references Martini C, Ceschini L, Tarterini F, Paillard J M, Curran J A. PEO layers obtained from mixed aluminate-phosphate baths on Ti-6Al-4V: Dry sliding behaviour and influence of a PTFE topcoat. Wear 269(11–12): 747–756 (2010) es_ES
dc.description.references Jin Z M, Dowson D. Bio-friction. Friction 1(2): 100–113 (2013) es_ES
dc.description.references Matykina E, Berkani A, Skeldon P, Thompson G E. Realtime imaging of coating growth during plasma electrolytic oxidation of titanium. Electrochimica Acta 53(4): 1987–1994 (2007) es_ES
dc.description.references Chen F, Zhou H, Chen C, Xia Y J. Study on the tribological performance of ceramic coatings on titanium alloy surfaces obtained through microarc oxidation. Prog Org Coat 64(2–3): 264–267 (2009) es_ES
dc.description.references Yerokhin A, Parfenov E V, Matthews A. In situ impedance spectroscopy of the plasma electrolytic oxidation process for deposition of Ca- and P-containing coatings on Ti. Surf Coat Technol 301: 54–62 (2016) es_ES
dc.description.references Shokouhfar M, Dehghanian C, Baradaran A. Preparation of ceramic coating on Ti substrate by plasma electrolytic oxidation in different electrolytes and evaluation of its corrosion resistance. Appl Surf Sci 257(7): 2617–2624 (2011) es_ES
dc.description.references Park M G, Choe H C. Corrosion behaviors of bioactive element coatings on PEO-treated Ti-6Al-4V alloys. Surf Coat Technol 376: 44–51 (2019) es_ES
dc.description.references Hussein R O, Nie X, Northwood D O. A spectroscopic and microstructural study of oxide coatings produced on a Ti-6Al-4V alloy by plasma electrolytic oxidation. Mater Chem Phys 134(1): 484–492 (2012) es_ES
dc.description.references Laurindo C A, Torres R D, Mali S A, Gilbert J L, Soares P. Incorporation of Ca and P on anodized titanium surface: Effect of high current density. Mater Sci Eng C Mater Biol Appl 37: 223–231 (2014) es_ES
dc.description.references Krupa D, Baszkiewicz J, Zdunek J, Smolik J, Słomka Z, Sobczak J W. Characterization of the surface layers formed on titanium by plasma electrolytic oxidation. Surf Coat Technol 205(6): 1743–1749 (2010) es_ES
dc.description.references Hwang I J, Choe H C, Brantley W A. Electrochemical characteristics of Ti-6Al-4V after plasma electrolytic oxidation in solutions containing Ca, P, and Zn ions. Surf Coat Technol 320: 458–466 (2017) es_ES
dc.description.references Reshadi F, Faraji G, Baniassadi M, Tajeddini M. Surface modification of severe plastically deformed ultrafine grained pure titanium by plasma electrolytic oxidation. Surf Coat Technol 316: 113–121 (2017) es_ES
dc.description.references Yao Z P, Jiang Y L, Jia F Z, Jiang Z H, Wang F P. Growth characteristics of plasma electrolytic oxidation ceramic coatings on Ti-6Al-4V alloy. Appl Surf Sci 254(13): 4084–4091 (2008) es_ES
dc.description.references Han I, Choi J H, Zhao B H, Baik H K, Lee I S. Micro-arc oxidation in various concentration of KOH and structural change by different cut off potential. Curr Appl Phys 7: e23–e27 (2007) es_ES
dc.description.references Philip J T, Mathew J, Kuriachen B. Tribology of Ti6Al4V: A review. Friction 7(6): 497–536 (2019) es_ES
dc.description.references Yu J M, Choe H C. Morphology changes and bone formation on PEO-treated Ti-6Al-4V alloy in electrolyte containing Ca, P, Sr, and Si ions. Appl Surf Sci 477: 121–130 (2019) es_ES
dc.description.references Shbeh M, Yerokhin A, Goodall R. Cyclic voltammetry study of PEO processing of porous Ti and resulting coatings. Appl Surf Sci 439: 801–814 (2018) es_ES
dc.description.references Menhal Shbeh M, Yerokhin A, Goodall R. Microporous titanium through metal injection moulding of coarse powder and surface modification by plasma oxidation. Appl Sci 7(1): 105 (2017) es_ES
dc.description.references Karaji Z G, Hedayati R, Pouran B, Apachitei I, Zadpoor A A. Effects of plasma electrolytic oxidation process on the mechanical properties of additively manufactured porous biomaterials. Mater Sci Eng: C 76: 406–416 (2017) es_ES
dc.description.references Toptan F, Alves A C, Pinto A M P, Ponthiaux P. Tribocorrosion behavior of bio-functionalized highly porous titanium. J Mech Behav Biomed Mater 69: 144–152 (2017) es_ES
dc.description.references Mabboux F, Ponsonnet L, Morrier JJ, Jaffrezic N, Barsotti O. Surface free energy and bacterial retention to saliva-coated dental implant materials: An in vitro study. Colloids Surf B Biointerfaces 39(4): 199–205 (2004) es_ES
dc.description.references Yerokhin A L, Nie X, Leyland A, Matthews A. Characterisation of oxide films produced by plasma electrolytic oxidation of a Ti-6Al-4V alloy. Surf Coat Technol 130(2–3): 195–206 (2000) es_ES
dc.description.references Alves S A, Bayón R, Igartua A, Saénz de Viteri V, Rocha L A. Tribocorrosion behaviour of anodic titanium oxide films produced by plasma electrolytic oxidation for dental implants. Lubr Sci 26(7–8): 500–513 (2014) es_ES
dc.description.references de Viteri V S, Bayón R, Igartua A, Barandika G, Moreno J E, Peremarch C P J, Pérez M M. Structure, tribocorrosion and biocide characterization of Ca, P and I containing TiO2 coatings developed by plasma electrolytic oxidation. Appl Surf Sci 367: 1–10 (2016) es_ES
dc.description.references US-ASTM. ASTM G99-05 Standard test method for wear testing with a pin-on-disk apparatus. ASTM, 2000. es_ES
dc.description.references Veiga C, Davim J P, Loureiro A J R. Properties and applications of titanium alloys: A brief review. Rev Adv Mater Sci 32: 14–24 (2012). es_ES
dc.description.references Rautray T R, Narayanan R, Kim K H. Ion implantation of titanium based biomaterials. Prog Mater Sci 56(8): 1137–1177 (2011) es_ES
dc.description.references Yetim A F. Investigation of wear behavior of titanium oxide films, produced by anodic oxidation, on commercially pure titanium in vacuum conditions. Surf Coat Technol 205(6): 1757–1763 (2010) es_ES
dc.description.references Suzuki K, Aoki K, Ohya K. Effects of surface roughness of titanium implants on bone remodeling activity of femur in rabbits. Bone 21(6): 507–514 (1997) es_ES
dc.description.references de Viteri V S, Fuentes E. Titanium and titanium alloys as biomaterials. In Tribology-Fundamentals and Advancements. Rijeka #, Ed. Croatia: IntechOpen, 2013: 155–181. es_ES
dc.description.references Zhou Y L, Niinomi M, Akahori T, Fukui H, Toda H. Corrosion resistance and biocompatibility of Ti-Ta alloys for biomedical applications. Mater Sci Eng: A 398(1–2): 28–36 (2005) es_ES
dc.description.references Myshkin N, Kovalev A. Adhesion and surface forces in polymer tribology—A review. Friction 6(2): 143–155 (2018) es_ES
dc.description.references Pałka K, Pokrowiecki R, Krzywicka M. Porous titanium materials and applications. Titanium for Consumer Applications. Amsterdam: Elsevier, 2019: 27–75. es_ES
dc.description.references Sasikumar Y, Karuppusamy I, Naillayan R. Surface modification methods for titanium and its alloys and their corrosion behavior in biological environment: A review. J Bio- and Tribo-Corrosion 5(36): 5–36 (2019) es_ES
dc.description.references Aziz-Kerrzo M, Conroy K G, Fenelon A M, Farrell S T, Breslin C B. Electrochemical studies on the stability and corrosion resistance of titanium-based implant materials. Biomaterials 22(12): 1531–1539 (2001) es_ES
dc.description.references Leitao E, Barbosa M A, De Groot K. In vitro testing of surface-modified biomaterials. J Mater Sci: Mater Med 9(9): 543–548 (1998) es_ES
dc.description.references Pałka K, Pokrowiecki R, Krzywicka M. Porous Titanium Materials and Applications. In Titanium for Consumer Applications. Froes F, Ed. Amsterdam: Elsevier, 2019: 27–75. es_ES
dc.description.references Vieira A C, Ribeiro A R, Rocha L A, Celis J P. Influence of pH and corrosion inhibitors on the tribocorrosion of titanium in artificial saliva. Wear 261(9): 994–1001 (2006) es_ES
dc.description.references Manhabosco T M, Tamborim S M, dos Santos C B, Müller I L. Tribological, electrochemical and tribo-electrochemical characterization of bare and nitrided Ti6Al4V in simulated body fluid solution. Corros Sci 53(5): 1786–1793 (2011) es_ES
dc.description.references Khanmohammadi H, Allahkaram S R, Muñoz A I, Encinas E R, Rashidfarokhi A R. Tribocorrosion behavior of plasma electrolytic oxidation coatings on a Ti6Al4V substrate. In Proceedings of Eurocorr 2016, Montpellier, France, 2016: 1–5. es_ES
dc.description.references Meng Y G, Xu J, Jin Z M, Prakash B, Hu Y Z. A review of recent advances in tribology. Friction 8(2): 221–300 (2020) es_ES
dc.description.references Ríos J M, Quintero D, Castaño J G, Echeverría F, Gómez M A. Comparison among the lubricated and unlubricated tribological behavior of coatings obtained by PEO on the Ti6Al4V alloy in alkaline solutions. Tribol Int 128: 1–8 (2018) es_ES
dc.description.references Laurindo C A H, Lepienski C M, Amorim F L, Torres R D, Soares P. Mechanical and tribological properties of Ca/P-doped titanium dioxide layer produced by plasma electrolytic oxidation: Effects of applied voltage and heat treatment. Tribol Trans 61(4): 733–741 (2018) es_ES
dc.description.references Kikuchi M, Takahashi M, Okuno O. Elastic moduli of cast Ti-Au, Ti-Ag, and Ti-Cu alloys. Dent Mater 22(7): 641–646 (2006) es_ES
dc.description.references Niinomi M, Akahori T, Takeuchi T, Katsura S, Fukui H, Toda H. Mechanical properties and cyto-toxicity of new beta type titanium alloy with low melting points for dental applications. Mater Sci Eng: C 25(3): 417–425 (2005) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem