- -

Emerging topics in nanophononics and elastic, acoustic, and mechanical metamaterials: an overview

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Emerging topics in nanophononics and elastic, acoustic, and mechanical metamaterials: an overview

Mostrar el registro completo del ítem

Krushynska, AO.; Torrent, D.; Aragón, AM.; Ardito, R.; Bilal, OR.; Bonello, B.; Bosia, F.... (2023). Emerging topics in nanophononics and elastic, acoustic, and mechanical metamaterials: an overview. Nanophotonics (Online). 12(4):659-686. https://doi.org/10.1515/nanoph-2022-0671

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/194497

Ficheros en el ítem

Metadatos del ítem

Título: Emerging topics in nanophononics and elastic, acoustic, and mechanical metamaterials: an overview
Autor: Krushynska, Anastasiia O. Torrent, Daniel Aragón, Alejandro M. Ardito, Raffaele Bilal, Osama R. Bonello, Bernard Bosia, Federico Chen, Yi Christensen, Johan Colombi, Andrea Cummer, Steven A. Djafari-Rouhani, Bahram Fraternali, Fernando Galich, Pavel I. García, Pedro David Groby, Jean-Philippe Jimenez, Noe Picó Vila, Rubén
Entidad UPV: Universitat Politècnica de València. Escuela Politécnica Superior de Gandia - Escola Politècnica Superior de Gandia
Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular
Fecha difusión:
Resumen:
[EN] This broad review summarizes recent advances and "hot " research topics in nanophononics and elastic, acoustic, and mechanical metamaterials based on results presented by the authors at the EUROMECH 610 Colloquium ...[+]
Palabras clave: Acoustics , Additive manufacturing , Mechanics , Metamaterials , Optomechanics , Wave dynamics
Derechos de uso: Reconocimiento (by)
Fuente:
Nanophotonics (Online). (eissn: 2192-8614 )
DOI: 10.1515/nanoph-2022-0671
Editorial:
Walter de Gruyter GmbH
Versión del editor: https://doi.org/10.1515/nanoph-2022-0671
Código del Proyecto:
info:eu-repo/grantAgreement/EC//101046489//DYNAMO/
info:eu-repo/grantAgreement/MICINN//PID2021-124814NB-C22/
Agradecimientos:
This work is supported by the DYNAMO project (101046489) funded by the European Union. Views and opinions expressed are however those of the authors only and do not necessarily reflect those of the European Union or European ...[+]
Tipo: Artículo

References

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ϵ and μ,” Usp. Fiz. Nauk, vol. 92, no. 7, p. 517, 1964. https://doi.org/10.3367/ufnr.0173.200307m.0790.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech., vol. 46, pp. 2075–2084, 1999. https://doi.org/10.1109/22.798002.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett., vol. 84, no. 18, p. 4184, 2000. https://doi.org/10.1103/physrevlett.84.4184. [+]
V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ϵ and μ,” Usp. Fiz. Nauk, vol. 92, no. 7, p. 517, 1964. https://doi.org/10.3367/ufnr.0173.200307m.0790.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech., vol. 46, pp. 2075–2084, 1999. https://doi.org/10.1109/22.798002.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett., vol. 84, no. 18, p. 4184, 2000. https://doi.org/10.1103/physrevlett.84.4184.

M. H. Lu, L. Feng, and Y. F. Chen, “Phononic crystals and acoustic metamaterials,” Mater. Today, vol. 12, no. 12, pp. 34–42, 2009. https://doi.org/10.1016/s1369-7021(09)70315-3.

Y. Pennec, J. O. Vasseur, B. Djafari-Rouhani, L. Dobrzyński, and P. A. Deymier, “Two-dimensional phononic crystals: examples and applications,” Surf. Sci. Rep., vol. 65, no. 8, pp. 229–291, 2010. https://doi.org/10.1016/j.surfrep.2010.08.002.

J. H. Lee, J. P. Singer, and E. L. Thomas, “Micro-/Nanostructured mechanical metamaterials,” Adv. Mater., vol. 24, no. 36, pp. 4782–4810, 2012. https://doi.org/10.1002/adma.201201644.

M. Maldovan, “Sound and heat revolutions in phononics,” Nature, vol. 503, pp. 209–217, 2013. https://doi.org/10.1038/nature12608.

M. I. Hussein, M. J. Leamy, and M. Ruzzene, “Dynamics of phononic materials and structures: historical origins, recent progress, and future outlook,” ASME Appl. Mech. Rev., vol. 66, no. 4, p. 040802, 2014. https://doi.org/10.1115/1.4026911.

S. A. Cummer, J. Christensen, and A. Alù, “Controlling sound with acoustic metamaterials,” Nat. Rev. Mater., vol. 1, p. 16001, 2016. https://doi.org/10.1038/natrevmats.2016.1.

G. Ma and P. Sheng, “Acoustic metamaterials: from local resonances to broad horizons,” Sci. Adv., vol. 1, p. e1501595, 2016. https://doi.org/10.1126/sciadv.1501595.

K. Bertoldi, V. Vitelli, J. Christensen, and M. van Hecke, “Flexible mechanical metamaterials,” Nat. Rev. Mater., vol. 2, p. 17066, 2017. https://doi.org/10.1038/natrevmats.2017.66.

F. Zangeneh-Nejad and R. Fleury, “Active times for acoustic metamaterials,” Rev. Phys., vol. 4, p. 100031, 2019. https://doi.org/10.1016/j.revip.2019.100031.

M. Kadic, G. W. Milton, M. van Hecke, and M. Wegener, “3D metamaterials,” Nat. Rev. Phys., vol. 1, pp. 198–210, 2019. https://doi.org/10.1038/s42254-018-0018-y.

J. U. Surjadi, L. Gao, H. Du, et al.., “Mechanical metamaterials and their engineering applications,” Adv. Eng. Mater., vol. 21, no. 3, p. 1800864, 2019. https://doi.org/10.1002/adem.201800864.

M. I. Hussein, C. N. Tsai, and H. Honarvar, “Thermal conductivity reduction in a nanophononic metamaterial versus a nanophononic crystal: a review and comparative analysis,” Adv. Funct. Mater., vol. 30, p. 1906718, 2020. https://doi.org/10.1002/adfm.201906718.

Y. Jin, Y. Pennec, B. Bonello, et al.., “Physics of surface vibrational resonances: pillared phononic crystals, metamaterials, and metasurfaces,” Rep. Prog. Phys., vol. 84, p. 086502, 2021. https://doi.org/10.1088/1361-6633/abdab8.

M. Sigalas and E. N. Economou, “Band structure of elastic waves in two dimensional systems,” Solid State Commun., vol. 86, pp. 141–143, 1993. https://doi.org/10.1016/0038-1098(93)90888-t.

M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, “Acoustic band structure of periodic elastic composites,” Phys. Rev. Lett., vol. 71, pp. 2022–2025, 1993. https://doi.org/10.1103/physrevlett.71.2022.

Z. Liu, X. Zhang, Y. Mao, et al.., “Locally resonant sonic materials,” Science, vol. 289, pp. 1734–1736, 2000. https://doi.org/10.1126/science.289.5485.1734.

O. R. Bilal, D. Ballagi, and C. Daraio, “Architected lattices for simultaneous broadband attenuation of airborne sound and mechanical vibrations in all directions,” Phys. Rev. Appl., vol. 10, no. 5, p. 054060, 2018. https://doi.org/10.1103/physrevapplied.10.054060.

M. Kheybari, C. Daraio, and O. R. Bilal, “Tunable auxetic metamaterials for simultaneous attenuation of airborne sound and elastic vibrations in all directions,” Appl. Phys. Lett., vol. 121, no. 8, p. 081702, 2022. https://doi.org/10.1063/5.0104266.

B. L. Davis and M. I. Hussein, “Nanophononic metamaterial: thermal conductivity reduction by local resonance,” Phys. Rev. Lett., vol. 112, p. 055505, 2014. https://doi.org/10.1103/physrevlett.112.055505.

H. Honarvar, J. L. Knobloch, T. D. Frazer, et al.., “Directional thermal channeling: a phenomenon triggered by tight packing of heat sources,” Proc. Natl. Acad. Sci. U. S. A., vol. 118, p. e2109056118, 2021. https://doi.org/10.1073/pnas.2109056118.

Y. Jin, W. Wang, A. Khelif, and B. Djafari-Rouhani, “Elastic metasurfaces for deep and robust subwavelength focusing and imaging,” Phys. Rev. Appl., vol. 15, p. 024005, 2021. https://doi.org/10.1103/physrevapplied.15.024005.

W. Wang, J. Iglesias, Y. Jin, B. Djafari-Rouhani, and A. Khelif, “Experimental realization of a pillared metasurface for flexural wave focusing,” APL Mater., vol. 9, p. 051125, 2021. https://doi.org/10.1063/5.0052278.

F. Gao, A. Bermak, S. Benchabane, M. Raschetti, and A. Khelif, “Nonlinear effects in locally resonant nanostrip phononic metasurface at GHz frequencies,” Appl. Phys. Lett., vol. 118, p. 113502, 2021. https://doi.org/10.1063/5.0040244.

S. Benchabane, A. Jallouli, L. Raguin, et al.., “Nonlinear coupling of phononic resonators induced by surface acoustic waves,” Phys. Rev. Appl., vol. 16, p. 054024, 2021. https://doi.org/10.1103/physrevapplied.16.054024.

Y. Xie, W. Wang, H. Chen, A. Konneker, B. I. Popa, and S. A. Cummer, et al.., “Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface,” Nat. Commun., vol. 5, pp. 1–5, 2014. https://doi.org/10.1038/ncomms6553.

B. Liang, J. C. Cheng, and C. W. Qiu, “Wavefront manipulation by acoustic metasurfaces: from physics and applications,” Nanophotonics, vol. 7, pp. 1191–1205, 2018. https://doi.org/10.1515/nanoph-2017-0122.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater., vol. 13, pp. 139–150, 2014. https://doi.org/10.1038/nmat3839.

S. M. Kamali, E. Arbabi, A. Arbabi, and A. Faraon, “A review of dielectric optical metasurfaces for wavefront control,” Nanophotonics, vol. 7, pp. 1041–1068, 2018. https://doi.org/10.1515/nanoph-2017-0129.

S. Sun, Q. He, J. Hao, S. Xiao, and L. Zhou, “Electromagnetic metasurfaces: physics and applications,” Adv. Opt. Photonics, vol. 11, pp. 380–479, 2019. https://doi.org/10.1364/aop.11.000380.

M. Lawrence and J. A. Dionne, “Nanoscale nonreciprocity via photon-spin-polarized stimulated Raman scattering,” Nat. Commun., vol. 10, p. 3297, 2019. https://doi.org/10.1038/s41467-019-11175-z.

V. Valuckas, R. Paniagua-Domínguez, A. Maimaiti, et al.., “Fabrication of monodisperse colloids of resonant spherical silicon nanoparticles: applications in optical trapping and printing,” ACS Photonics, vol. 6, pp. 2141–2148, 2019. https://doi.org/10.1021/acsphotonics.9b00722.

B. Djafari-Rouhani, L. Carpentier, and Y. Pennec, “Elastic metasurface made of elliptic shape pillars for acoustic focusing,” in IUS 2022 Symposium Proceedings, 2022, p. 2287.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol., vol. 10, no. 11, pp. 937–943, 2015. https://doi.org/10.1038/nnano.2015.186.

S. M. Kamali, E. Arbabi, A. Arbabi, Y. Horie, and A. Faraon, “Highly tunable elastic dielectric metasurface lenses,” Laser Photonics Rev., vol. 10, no. 6, pp. 1002–1008, 2016. https://doi.org/10.1002/lpor.201600144.

M. Maldovan and E. L. Thomas, “Simultaneous localization of photons and phonons in two-dimensional periodic structures,” Appl. Phys. Lett., vol. 88, p. 251907, 2006. https://doi.org/10.1063/1.2216885.

J. Gomis-Bresco, D. Navarro-Urrios, M. Oudich, et al.., “A one-dimensional optomechanical crystal with a complete phononic band gap,” Nat. Commun., vol. 5, p. 4452, 2014. https://doi.org/10.1038/ncomms5452.

D. Navarro-Urrios, N. E. Capuj, J. Maire, et al.., “Nanocrystalline silicon optomechanical cavities,” Opt. Express, vol. 26, pp. 9829–9839, 2018. https://doi.org/10.1364/OE.26.009829.

A. Cleland, “Photons refrigerating phonons,” Nat. Phys., vol. 5, p. 458, 2009. https://doi.org/10.1038/nphys1324.

C. Dong, V. Fiore, M. C. Kuzyk, and H. Wang, “Optomechanical dark mode,” Science, vol. 338, pp. 1609–1613, 2012. https://doi.org/10.1126/science.1228370.

D. Navarro-Urrios, M. F. Colombano, G. Arregui, et al.., “Room-temperature silicon platform for GHz-frequency nanoelectro-opto-mechanical systems,” ACS Photonics, vol. 9, pp. 413–419, 2022. https://doi.org/10.1021/acsphotonics.1c01614.

J. Maire, E. Chávez-Ángel, G. Arregui, et al.., “Thermal properties of nanocrystalline silicon nanobeams,” Adv. Funct. Mater., vol. 32, p. 2105767, 2022. https://doi.org/10.1002/adfm.202105767.

D. Navarro-Urrios, N. E. Capuj, M. F. Colombano, et al.., “Nonlinear dynamics and chaos in an optomechanical beam,” Nat. Commun., vol. 8, p. 14965, 2017. https://doi.org/10.1038/ncomms14965.

M. F. Colombano, G. Arregui, N. E. Capuj, et al.., “Synchronization of optomechanical nanobeams by mechanical interaction,” Phys. Rev. Lett., vol. 123, p. 017402, 2019. https://doi.org/10.1103/PhysRevLett.123.017402.

G. Arregui, R. C. Ng, M. Albrechtsen, S. Stobbe, C. M. S. Torres, and P. D. García, “Cavity optomechanics with Anderson-localized optical modes,” arXiv:2110.11005, 2021.

C. Sauvan, J. P. Hugonin, I. S. Maksymov, and P. Lalanne, “Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators,” Phys. Rev. Lett., vol. 110, p. 237401, 2013. https://doi.org/10.1103/physrevlett.110.237401.

E. A. Muljarov and W. Langbein, “Exact mode volume and Purcell factor of open optical systems,” Phys. Rev. B, vol. 94, p. 235438, 2016. https://doi.org/10.1103/physrevb.94.235438.

Y. F. Wang, S. Y. Zhang, Y. S. Wang, and V. Laude, “Hybridization of resonant modes and Bloch waves in acoustoelastic phononic crystals,” Phys. Rev. B, vol. 102, p. 144303, 2020. https://doi.org/10.1103/physrevb.102.144303.

M. K. Schmidt, L. G. Helt, C. G. Poulton, and M. J. Steel, “Elastic Purcell effect,” Phys. Rev. Lett., vol. 121, p. 064301, 2018. https://doi.org/10.1103/physrevlett.121.064301.

V. Laude and M. E. Korotyaeva, “Stochastic excitation method for calculating the resolvent band structure of periodic media and waveguides,” Phys. Rev. B, vol. 97, p. 224110, 2018. https://doi.org/10.1103/physrevb.97.224110.

O. Florez, G. Arregui, M. Albrechtsen, et al.., “Engineering nanoscale hypersonic phonon transport,” Nat. Nanotechnol., vol. 17, p. 947, 2022. https://doi.org/10.1038/s41565-022-01178-1.

G. Madiot, R. C. Ng, G. Arregui, et al.., “Optomechanical generation of coherent GHz vibrations in a phononic waveguide,” arXiv:2206.06913v1, 2022.

J. S. Jensen, “Phononic band gaps and vibrations in one-and two-dimensional mass–spring structures,” J. Sound Vib., vol. 266, pp. 1053–1078, 2003. https://doi.org/10.1016/s0022-460x(02)01629-2.

M. I. Hussein and M. J. Frazier, “Metadamping: an emergent phenomenon in dissipative metamaterials,” J. Sound Vib., vol. 332, pp. 4767–4774, 2013. https://doi.org/10.1016/j.jsv.2013.04.041.

A. Foehr, O. R. Bilal, S. D. Huber, and C. Daraio, “Spiral-based phononic plates: from wave beaming to topological insulators,” Phys. Rev. Lett., vol. 120, no. 20, p. 205501, 2018. https://doi.org/10.1103/physrevlett.120.205501.

M. Miniaci, A. Krushynska, A. S. Gliozzi, N. Kherraz, F. Bosia, and N. M. Pugno, “Design and fabrication of bioinspired hierarchical dissipative elastic metamaterials,” Phys. Rev. Appl., vol. 10, no. 2, p. 024012, 2018. https://doi.org/10.1103/PhysRevApplied.10.024012.

V. F. Dal Poggetto, F. Bosia, M. Miniaci, and N. M. Pugno, “Band gap enhancement in periodic frames using hierarchical structures,” Int. J. Solids Struct., vol. 216, pp. 68–82, 2021. https://doi.org/10.1016/j.ijsolstr.2021.01.003.

V. F. Dal Poggetto, F. Bosia, M. Miniaci, and N. M. Pugno, “Optimization of spider web-inspired phononic crystals to achieve tailored dispersion for diverse objectives,” Mater. Des., vol. 209, p. 109980, 2021. https://doi.org/10.1016/j.matdes.2021.109980.

J. O. Vasseur, P. A. Deymier, B. Chenni, B. Djafari-Rouhani, L. Dobrzynski, and D. Prevost, “Experimental and theoretical evidence for the existence of absolute acoustic band gaps in two-dimensional solid phononic crystals,” Phys. Rev. Lett., vol. 86, p. 3012, 2001. https://doi.org/10.1103/physrevlett.86.3012.

H. W. Dong, S. D. Zhao, Y. S. Wang, and C. Zhang, “Topology optimization of anisotropic broadband double-negative elastic metamaterials,” J. Mech. Phys. Solids, vol. 105, pp. 54–80, 2017. https://doi.org/10.1016/j.jmps.2017.04.009.

A. Palermo, Y. Wang, P. Celli, and C. Daraio, “Tuning of surface-acoustic-wave dispersion via magnetically modulated contact resonances,” Phys. Rev. Appl., vol. 11, no. 4, p. 044057, 2019. https://doi.org/10.1103/physrevapplied.11.044057.

X. Fang, J. Wen, B. Bonello, J. Yin, and D. Yu, “Ultra-low and ultra-broad-band nonlinear acoustic metamaterials,” Nat. Commun., vol. 8, no. 1, pp. 1–11, 2017. https://doi.org/10.1038/s41467-017-00671-9.

Q. Wu, H. Chen, H. Nassar, and G. Huang, “Non-reciprocal Rayleigh wave propagation in space–time modulated surface,” J. Mech. Phys. Solids, vol. 146, p. 104196, 2021. https://doi.org/10.1016/j.jmps.2020.104196.

T. Dubček, D. Moreno-Garcia, T. Haag, et al.., “Binary classification of spoken words with passive elastic metastructures,” arXiv:2111.08503, 2021.

C. Sinigaglia, D. E. Quadrelli, A. Manzoni, and F. Braghin, “Fast active thermal cloaking through PDE-constrained optimization and reduced-order modelling,” Proc. R. Soc. A, vol. 478, no. 2258, p. 20210813, 2022. https://doi.org/10.1098/rspa.2021.0813.

J. M. De Ponti, L. Iorio, E. Riva, R. Ardito, F. Braghin, and A. Corigliano, “Selective mode conversion and rainbow trapping via graded elastic waveguides,” Phys. Rev. Appl., vol. 16, no. 3, p. 034028, 2021. https://doi.org/10.1103/physrevapplied.16.034028.

F. Fraternali, N. Singh, A. Amendola, G. Benzoni, and G. W. Milton, “A biomimetic sliding–stretching approach to seismic isolation,” Nonlinear Dyn., vol. 106, pp. 3147–3159, 2021. https://doi.org/10.1007/s11071-021-06980-5.

K. Fujita, M. Tomoda, O. B. Wright, and O. Matsuda, “Perfect acoustic bandgap metabeam based on a quadruple-mode resonator array,” Appl. Phys. Lett., vol. 115, p. 081905, 2019. https://doi.org/10.1063/1.5117283.

H. Takeda, E. Murakami, M. Tomoda, O. Matsuda, K. Fujita, and O. B. Wright, “Tapered rainbow metabeam for wideband multimode acoustic blocking based on quadruple-mode resonators,” Appl. Phys. Lett., vol. 121, p. 131701, 2022. https://doi.org/10.1063/5.0098371.

P. H. Otsuka, S. Mezil, O. Matsuda, et al.., “Time-domain imaging of gigahertz surface waves on an acoustic metamaterial,” New J. Phys., vol. 120, p. 013026, 2018. https://doi.org/10.1088/1367-2630/aa9298.

D. J. Colquitt, A. Colombi, R. V. Craster, P. Roux, and S. R. L. Guenneau, “Seismic metasurfaces: sub-wavelength resonators and Rayleigh wave interaction,” J. Mech. Phys. Solids, vol. 99, pp. 379–393, 2017. https://doi.org/10.1016/j.jmps.2016.12.004.

X. Pu, A. Palermo, Z. Cheng, Z. Shi, and A. Marzani, “Seismic metasurfaces on porous layered media: surface resonators and fluid-solid interaction effects on the propagation of Rayleigh waves,” Int. J. Eng. Sci., vol. 154, p. 103347, 2020. https://doi.org/10.1016/j.ijengsci.2020.103347.

A. Colombi, D. Colquitt, P. Roux, S. Guenneau, and R. V. Craster, “A seismic metamaterial: the resonant metawedge,” Sci. Rep., vol. 6, pp. 1–6, 2016. https://doi.org/10.1038/srep27717.

X. Pu, A. Palermo, and A. Marzani, “Lamb’s problem for a half-space coupled to a generic distribution of oscillators at the surface,” Int. J. Eng. Sci., vol. 168, p. 103547, 2021. https://doi.org/10.1016/j.ijengsci.2021.103547.

A. Palermo, P. Celli, B. Yousefzadeh, C. Daraio, and A. Marzani, “Surface wave non-reciprocity via time-modulated metamaterials,” J. Mech. Phys. Solids, vol. 145, p. 104181, 2020. https://doi.org/10.1016/j.jmps.2020.104181.

R. Marchal, O. Boyko, B. Bonello, et al.., “Dynamics of confined cavity modes in a phononic crystal slab investigated by in situ time-resolved experiments,” Phys. Rev. B, vol. 86, no. 22, p. 224302, 2012. https://doi.org/10.1103/PhysRevB.86.224302.

V. S. Deshpande, N. A. Fleck, and M. F Ashby, “Effective properties of the octet-truss lattice material,” J. Mech. Phys. Solids, vol. 49, pp. 1747–1769, 2001. https://doi.org/10.1016/s0022-5096(01)00010-2.

A. Colombi, R. V. Craster, D. Colquitt, et al.., “Elastic wave control beyond band-gaps: shaping the flow of waves in plates and half-spaces with subwavelength resonant rods,” Front. Mech. Eng., vol. 3, p. 10, 2017. https://doi.org/10.3389/fmech.2017.00010.

G. Aguzzi, C. Kanellopoulos, R. Wiltshaw, R. V. Craster, E. N. Chatzi, and A. Colombi, “Octet lattice-based plate for elastic wave control,” Sci. Rep., vol. 12, pp. 1–14, 2022. https://doi.org/10.1038/s41598-022-04900-0.

F. Bosia, V. F. Dal Poggetto, A. S. Gliozzi, et al.., “Optimized structures for vibration attenuation and sound control in Nature: a review,” Matter, vol. 5, no. 10, pp. 3311–3340, 2022. https://doi.org/10.1016/j.matt.2022.07.023.

A. O. Krushynska, A. S. Gliozzi, A. Fina, et al.., “Dissipative dynamics of polymer phononic materials,” Adv. Funct. Mater., vol. 31, no. 30, p. 2103424, 2021. https://doi.org/10.1002/adfm.202103424.

A. O. Krushynska, N. Anerao, M. A. Badillo-Ávila, M. Stokroos, and M. Acuautla, “Arbitrary-curved waveguiding and broadband attenuation in additively manufactured lattice phononic media,” Mater. Des., vol. 205, p. 109714, 2021. https://doi.org/10.1016/j.matdes.2021.109714.

L. Landau, “Theory of the superfluidity of Helium II,” Phys. Rev., vol. 60, no. 4, pp. 356–358, 1941. https://doi.org/10.1103/PhysRev.60.356.

J. A. I. Martínez, M. F. Groß, Y. Chen, et al.., “Experimental observation of roton-like dispersion relations in metamaterials,” Sci. Adv., vol. 7, no. 49, p. eabm2189, 2021. https://doi.org/10.1126/sciadv.abm2189.

D. Torrent, D. Mayou, and J. Sánchez-Dehesa, “Elastic analog of graphene: Dirac cones and edge states for flexural waves in thin plates,” Phys. Rev. B, vol. 87, no. 11, p. 115143, 2013. https://doi.org/10.1103/PhysRevB.87.115143.

M. Rosendo López, F. Peñaranda, J. Christensen, and P. San-Jose, “Flat bands in magic-angle vibrating plates,” Phys. Rev. Lett., vol. 125, no. 21, p. 214301, 2020. https://doi.org/10.1103/PhysRevLett.125.214301.

J. M. B. Lopes dos Santos, N. M. R. Peres, and A. H. Castro Neto, “Graphene bilayer with a twist: electronic structure,” Phys. Rev. Lett., vol. 99, no. 25, p. 256802, 2007. https://doi.org/10.1103/PhysRevLett.99.256802.

O. Sigmund, “Design of multiphysics actuators using topology optimization–part II: two-material structures,” Comput. Methods Appl. Mech. Eng., vol. 190, no. 49, pp. 6605–6627, 2001. https://doi.org/10.1016/s0045-7825(01)00252-3.

O. Sigmund and J. S. Jensen, “Systematic design of phononic band–gap materials and structures by topology optimization,” Philos. Trans. R. Soc., A, vol. 361, pp. 1001–1019, 2003. https://doi.org/10.1098/rsta.2003.1177.

O. R. Bilal and M. I. Hussein, “Ultrawide phononic band gap for combined in-plane and out-of-plane waves,” Phys. Rev. E, vol. 84, p. 065701(R), 2011. https://doi.org/10.1103/physreve.84.065701.

C. B. Dilgen, S. B. Dilgen, N. Aage, and J. S. Jensen, “Topology optimization of acoustic mechanical interaction problems: a comparative review,” Struct. Multidiscip. Optim., vol. 60, no. 2, pp. 779–801, 2019. https://doi.org/10.1007/s00158-019-02236-4.

W. Li, F. Meng, Y. Chen, Y. f. Li, and X. Huang, “Topology optimization of photonic and phononic crystals and metamaterials: a review,” Adv. Theory Simul., vol. 2, no. 7, p. 1900017, 2019. https://doi.org/10.1002/adts.201900017.

S. J. van den Boom, J. Zhang, F. van Keulen, and A. M. Aragón, “An interface-enriched generalized finite element method for level set-based topology optimization,” Struct. Multidiscip. Optim., vol. 63, pp. 1–20, 2021. https://doi.org/10.1007/s00158-020-02682-5.

S. J. van den Boom, F. van Keulen, and A. M. Aragón, “Fully decoupling geometry from discretization in the Bloch–Floquet finite element analysis of phononic crystals,” Comput. Methods Appl. Mech. Eng., vol. 382, p. 113848, 2021. https://doi.org/10.1016/j.cma.2021.113848.

A. S. Gliozzi, M. Miniaci, A. Chiappone, A. Bergamini, B. Morin, and E. Descrovi, “Tunable photo-responsive elastic metamaterials,” Nat. Commun., vol. 11, no. 1, p. 2576, 2020. https://doi.org/10.1038/s41467-020-16272-y.

B. Deng, J. R. Raney, K. Bertoldi, and V. Tournat, “Nonlinear waves in flexible mechanical metamaterials,” J. Appl. Phys., vol. 130, no. 4, p. 040901, 2021. https://doi.org/10.1063/5.0050271.

B. Deng, J. R. Raney, V. Tournat, and K. Bertoldi, “Elastic vector solitons in soft architected materials,” Phys. Rev. Lett., vol. 118, no. 20, p. 204102, 2017. https://doi.org/10.1103/physrevlett.118.204102.

B. Deng, P. Wang, Q. He, V. Tournat, and K. Bertoldi, “Metamaterials with amplitude gaps for elastic solitons,” Nat. Commun., vol. 9, no. 1, pp. 1–8, 2018. https://doi.org/10.1038/s41467-018-05908-9.

B. Deng, V. Tournat, and K. Bertoldi, “Effect of predeformation on the propagation of vector solitons in flexible mechanical metamaterials,” Phys. Rev. E, vol. 98, no. 5, p. 053001, 2018. https://doi.org/10.1103/physreve.98.053001.

B. Deng, V. Tournat, P. Wang, and K. Bertoldi, “Anomalous collisions of elastic vector solitons in mechanical metamaterials,” Phys. Rev. Lett., vol. 122, no. 4, p. 044101, 2019. https://doi.org/10.1103/physrevlett.122.044101.

X. Guo, V. E. Gusev, V. Tournat, B. Deng, and K. Bertoldi, “Frequency-doubling effect in acoustic reflection by a nonlinear, architected rotating-square metasurface,” Phys. Rev. E, vol. 99, no. 5, p. 052209, 2019. https://doi.org/10.1103/physreve.99.052209.

B. Deng, C. Mo, V. Tournat, K. Bertoldi, and J. R. Raney, “Focusing and mode separation of elastic vector solitons in a 2D soft mechanical metamaterial,” Phys. Rev. Lett., vol. 123, no. 2, p. 024101, 2019. https://doi.org/10.1103/physrevlett.123.024101.

L. Jin, R. Khajehtourian, J. Mueller, et al.., “Guided transition waves in multistable mechanical metamaterials,” Proc. Natl. Acad. Sci., vol. 117, no. 5, pp. 2319–2325, 2020. https://doi.org/10.1073/pnas.1913228117.

B. Deng, P. Wang, V. Tournat, and K. Bertoldi, “Nonlinear transition waves in free-standing bistable chains,” J. Mech. Phys. Solids, vol. 136, p. 103661, 2020. https://doi.org/10.1016/j.jmps.2019.07.004.

B. Deng, S. Yu, A. E. Forte, V. Tournat, and K. Bertoldi, “Characterization, stability, and application of domain walls in flexible mechanical metamaterials,” Proc. Natl. Acad. Sci., vol. 117, no. 49, pp. 31002–31009, 2020. https://doi.org/10.1073/pnas.2015847117.

M. H. Abedinnasab and M. I. Hussein, “Wave dispersion under finite deformation,” Wave Motion, vol. 50, no. 3, pp. 374–388, 2013. https://doi.org/10.1016/j.wavemoti.2012.10.008.

R. Khajehtourian and M. I. Hussein, “Time-independent harmonics dispersion relation for time-evolving nonlinear waves,” Sci. Adv., vol. 7, no. 50, p. eabl3695, 2021. https://doi.org/10.1126/sciadv.abl3695.

M. H. Abedin-Nasab, M. V. Bastawrous, and M. I. Hussein, “Explicit dispersion relation for strongly nonlinear flexural waves using the homotopy analysis method,” Nonlinear Dyn., vol. 99, no. 1, pp. 737–752, 2020. https://doi.org/10.1007/s11071-019-05383-x.

R. Khajehtourian and M. I. Hussein, “Dispersion characteristics of a nonlinear elastic metamaterial,” AIP Adv., vol. 4, no. 12, p. 124308, 2014. https://doi.org/10.1063/1.4905051.

M. I. Hussein and R. Khajehtourian, “Nonlinear Bloch waves and balance between hardening and softening dispersion,” Proc. R. Soc. A, vol. 474, no. 2217, p. 20180173, 2018. https://doi.org/10.1098/rspa.2018.0173.

N. Engheta, “Metamaterials with high degrees of freedom: space, time, and more,” Nanophotonics, vol. 10, no. 1, pp. 639–642, 2021. https://doi.org/10.1515/nanoph-2020-0414.

D. L. Sounas and A. Alù, “Non-reciprocal photonics based on time modulation,” Nat. Photonics, vol. 11, no. 12, pp. 774–783, 2017. https://doi.org/10.1038/s41566-017-0051-x.

B. Apffel and E. Fort, “Frequency conversion cascade by crossing multiple space and time interfaces,” Phys. Rev. Lett., vol. 128, no. 6, p. 064501, 2022. https://doi.org/10.1103/physrevlett.128.064501.

V. Pacheco-Peña and N. Engheta, “Temporal aiming,” Light: Sci. Appl., vol. 9, no. 1, pp. 1–12, 2020. https://doi.org/10.1038/s41377-020-00360-1.

A. Akbarzadeh, N. Chamanara, and C. Caloz, “Inverse prism based on temporal discontinuity and spatial dispersion,” Opt. Lett., vol. 43, no. 14, pp. 3297–3300, 2018. https://doi.org/10.1364/ol.43.003297.

C. Caloz and Z. L. Deck-Léger, “Spacetime metamaterials—part I: general concepts,” IEEE Trans. Antennas Propag., vol. 68, no. 3, pp. 1569–1582, 2019. https://doi.org/10.1109/tap.2019.2944225.

F. R. Morgenthaler, “Velocity modulation of electromagnetic waves,” IRE Trans. Microwave Theory Tech., vol. 6, no. 2, pp. 167–172, 1958. https://doi.org/10.1109/tmtt.1958.1124533.

S. Yin, E. Galiffi, and A. Alù, “Floquet metamaterials,” eLight, vol. 2, no. 1, pp. 1–13, 2022. https://doi.org/10.1186/s43593-022-00015-1.

X. Wen, X. Zhu, A. Fan, et al.., “Unidirectional amplification with acoustic non-Hermitian space-time varying metamaterial,” Commun. Phys., vol. 5, pp. 1–7, 2022. https://doi.org/10.1038/s42005-021-00790-2.

Q. Wang, P. del Hougne, and G. Ma, “Controlling the spatiotemporal response of transient reverberating sound,” Phys. Rev. Appl., vol. 17, no. 4, p. 044007, 2022. https://doi.org/10.1103/physrevapplied.17.044007.

H. Zhou and A. Baz, “Active nonreciprocal metamaterial using a spatiotemporal modulation control strategy,” Appl. Phys. Lett., vol. 121, no. 6, p. 061701, 2022. https://doi.org/10.1063/5.0100804.

M. Mostafa, A. Díaz-Rubio, M. S. Mirmoosa, and S. A. Tretyakov, “Coherently time-varying metasurfaces,” Phys. Rev. Appl., vol. 17, p. 064048, 2022. https://doi.org/10.1103/physrevapplied.17.064048.

O. R. Bilal, A. Foehr, and C. Daraio, “Bistable metamaterial for switching and cascading elastic vibrations,” Proc. Natl. Acad. Sci., vol. 114, no. 18, pp. 4603–4606, 2017. https://doi.org/10.1073/pnas.1618314114.

O. R. Bilal, A. Foehr, and C. Daraio, “Reprogrammable phononic metasurfaces,” Adv. Mater., vol. 29, no. 39, p. 1700628, 2017. https://doi.org/10.1002/adma.201700628.

M. Kheybari, Z. Wang, H. Xu, and O. R. Bilal, “Programmability of ultrathin metasurfaces through curvature,” Extreme Mech. Lett., vol. 52, p. 101620, 2022. https://doi.org/10.1016/j.eml.2022.101620.

J. Li, N. Arora, and S. Rudykh, “Elastic instabilities, microstructure transformations, and pattern formations in soft materials,” Curr. Opin. Solid State Mater. Sci., vol. 25, no. 2, p. 100898, 2021. https://doi.org/10.1016/j.cossms.2021.100898.

A. A. Watkins and O. R. Bilal, “Demultiplexing infrasound phonons with tunable magnetic lattices,” Front. Mater., vol. 7, p. 606877, 2020. https://doi.org/10.3389/fmats.2020.606877.

A. A. Watkins, A. Eichelberg, and O. R. Bilal, “Exploiting localized transition waves to tune sound propagation in soft materials,” Phys. Rev. B, vol. 104, no. 14, p. L140101, 2021. https://doi.org/10.1103/physrevb.104.l140101.

E. Norouzi, A. A. Watkins, and O. R. Bilal, “Classification of emerging patterns in self-assembled two-dimensional magnetic lattices,” Phys. Rev. E, vol. 104, no. 4, p. 044902, 2021. https://doi.org/10.1103/physreve.104.044902.

A. A. Watkins, A. Eichelberg, and O. R. Bilal, “Harnessing reprogrammable phase transitions to control the propagation of sound waves,” Phys. Rev. Appl., vol. 17, no. 2, p. 024036, 2022. https://doi.org/10.1103/physrevapplied.17.024036.

Y. F. Wang, A. A. Maznev, and V. Laude, “Formation of Bragg band gaps in anisotropic phononic crystals analyzed with the empty lattice model,” Crystals, vol. 6, no. 5, p. 52, 2016. https://doi.org/10.3390/cryst6050052.

A. B. M. T. Haque and J. Shim, “On spatial aliasing in the phononic band-structure of layered composites,” Int. J. Solids Struct., vol. 96, pp. 380–392, 2016. https://doi.org/10.1016/j.ijsolstr.2016.05.014.

J. J. Jorgensen, J. E. Christensen, T. J. Jarvis, and G. L. W. Hart, “A general algorithm for calculating irreducible Brillouin zones,” Comput. Phys. Commun., vol. 31, no. 2, pp. 495–515, 2022. https://doi.org/10.4208/cicp.OA-2021-0094.

X. Pu, A. Palermo, and A. Marzani, “A multiple scattering formulation for finite-size flexural metasurfaces,” Proc. R. Soc. A, vol. 478, no. 2262, p. 20210669, 2022. https://doi.org/10.1098/rspa.2021.0669.

X. Pu, A. Palermo, and A. Marzani, “Topological edge states of quasiperiodic elastic metasurfaces,” Mech. Syst. Signal Process., vol. 181, p. 109478, 2022. https://doi.org/10.1016/j.ymssp.2022.109478.

A. Palermo, B. Yousefzadeh, C. Daraio, and A. Marzani, “Rayleigh wave propagation in nonlinear metasurfaces,” J. Sound Vib., vol. 520, p. 116599, 2022. https://doi.org/10.1016/j.jsv.2021.116599.

A. Karlos, P. Packo, and A. N. Norris, “Nonlinear multiple scattering of flexural waves in elastic beams: frequency conversion and non-reciprocal effects,” J. Sound Vib., vol. 527, p. 116859, 2022. https://doi.org/10.1016/j.jsv.2022.116859.

R. H. Olsson and I. El-Kady, “Microfabricated phononic crystal devices and applications,” Meas. Sci. Technol., vol. 20, no. 1, p. 012002, 2008. https://doi.org/10.1088/0957-0233/20/1/012002.

A. Srivastava, “Elastic metamaterials and dynamic homogenization: a review,” Int. J. Smart Nano Mater., vol. 6, no. 1, pp. 41–60, 2015. https://doi.org/10.1080/19475411.2015.1017779.

Y. Cang, Y. Jin, B. Djafari-Rouhani, and G. Fytas, “Fundamentals, progress and perspectives on high-frequency phononic crystals,” J. Phys. D: Appl. Phys., vol. 55, no. 19, p. 193002, 2022. https://doi.org/10.1088/1361-6463/ac4941.

S. Brûlé, S. Enoch, and S. Guenneau, “Emergence of seismic metamaterials: current state and future perspectives,” Phys. Lett. A, vol. 384, no. 1, p. 126034, 2020. https://doi.org/10.1016/j.physleta.2019.126034.

D. Mu, H. Shu, L. Zhao, and S. An, “A review of research on seismic metamaterials,” Adv. Eng. Mater., vol. 22, no. 4, p. 1901148, 2020. https://doi.org/10.1002/adem.201901148.

B. K. Ahlborn, R. W. Blake, and W. M. Megill, “Frequency tuning in animal locomotion,” Zoology, vol. 109, no. 1, pp. 43–53, 2006. https://doi.org/10.1016/j.zool.2005.11.001.

I. E. Madera Sierra, D. Losanno, S. Strano, J. Marulanda, and P. Thomson, “Development and experimental behavior of HDR seismic isolators for low-rise residential buildings,” Eng. Struct., vol. 183, pp. 894–906, 2019. https://doi.org/10.1016/j.engstruct.2019.01.037.

G. Hu, L. Tang, J. Liang, C. Lan, and R. Das, “Acoustic-elastic metamaterials and phononic crystals for energy harvesting: a review,” Smart Mater. Struct., vol. 30, no. 8, p. 085025, 2021. https://doi.org/10.1088/1361-665x/ac0cbc.

P. Harrop, “Piezoelectric harvesting and sensors 2019-2039,” Tech. Rep., 2019. Available at: https://www.idtechex.com/en/research-report/piezoelectric-harvesting-and-sensing-2019-2039/646.

M. Carrara, M. R. Cacan, J. Toussaint, M. J. Leamy, M. Ruzzene, and A. Erturk, “Metamaterial-inspired structures and concepts for elastoacoustic wave energy harvesting,” Smart Mater. Struct., vol. 22, no. 6, p. 065004, 2013. https://doi.org/10.1088/0964-1726/22/6/065004.

J. M. De Ponti, A. Colombi, R. Ardito, F. Braghin, A. Corigliano, and R. V. Craster, “Graded elastic metasurface for enhanced energy harvesting,” New J. Phys., vol. 22, no. 1, p. 013013, 2020. https://doi.org/10.1088/1367-2630/ab6062.

J. M. De Ponti, E. Riva, F. Braghin, and R. Ardito, “Elastic three-dimensional metaframe for selective wave filtering and polarization control,” Appl. Phys. Lett., vol. 119, no. 21, p. 211903, 2021. https://doi.org/10.1063/5.0065553.

M. Cassier, T. DeGiovanni, S. Guenneau, and F. Guevara Vasquez, “Active thermal cloaking and mimicking,” Proc. R. Soc. A, vol. 477, no. 2249, p. 20200941, 2021. https://doi.org/10.1098/rspa.2020.0941.

F. Guevara Vasquez, G. W. Milton, and D. Onofrei, “Exterior cloaking with active sources in two dimensional acoustics,” Wave Motion, vol. 48, no. 6, pp. 515–524, 2011. https://doi.org/10.1016/j.wavemoti.2011.03.005.

M. Cassier, T. DeGiovanni, S. Guenneau, and F. Guevara Vasquez, “Active exterior cloaking for the 2d helmholtz equation with complex wavenumbers and application to thermal cloaking,” Philos. Trans. R. Soc., A, vol. 380, no. 2237, p. 20220073, 2022. https://doi.org/10.1098/rsta.2022.0073.

S. W. Baek, P. Molet, M. J. Choi, et al.., “Nanostructured back reflectors for efficient colloidal quantum-dot infrared optoelectronics,” Adv. Mater., vol. 31, no. 33, p. 1901745, 2019. https://doi.org/10.1002/adma.201901745.

C. Dore, B. Dörling, J. L. Garcia-Pomar, M. Campoy-Quiles, and A. Mihi, “Hydroxypropyl cellulose adhesives for transfer printing of carbon nanotubes and metallic nanostructures,” Small, vol. 16, no. 47, p. 2004795, 2020. https://doi.org/10.1002/smll.202004795.

P. Molet, N. Passarelli, L. A. Pérez, L. Scarabelli, and A. Mihi, “Engineering plasmonic colloidal meta-molecules for tunable photonic supercrystals,” Adv. Opt. Mater., vol. 9, no. 20, p. 2100761, 2021. https://doi.org/10.1002/adom.202100761.

L. Scarabelli, D. Vila-Liarte, A. Mihi, and L. M. Liz-Marzán, “Templated colloidal self-assembly for lattice plasmon engineering,” Acc. Mater. Res., vol. 2, no. 9, pp. 816–827, 2021. https://doi.org/10.1021/accountsmr.1c00106.

D. Vila-Liarte, M. W. Feil, A. Manzi, et al.., “Templated-assembly of CsPbBr3 perovskite nanocrystals into 2D photonic supercrystals with amplified spontaneous emission,” Angew. Chem., Int., vol. 59, no. 40, pp. 17750–17756, 2020. https://doi.org/10.1002/anie.202006152.

J. C. Coulombe, M. C. A. York, and J. Sylvestre, “Computing with networks of nonlinear mechanical oscillators,” PLOS One, vol. 12, no. 6, pp. 1–13, 2017. https://doi.org/10.1371/journal.pone.0178663.

G. Dion, A. I. E. Oudrhiri, B. Barazani, A. Tessier-Poirier, and J. Sylvestre, “Reservoir computing in MEMS,” in Reservoir Computing: Theory, Physical Implementations, and Applications, K. Nakajima and I. Fischer, Eds., Singapore, Springer Singapore, 2021, pp. 191–217.

M. Serra-Garcia, “Turing-complete mechanical processor via automated nonlinear system design,” Phys. Rev. E, vol. 100, no. 4, p. 042202, 2019. https://doi.org/10.1103/PhysRevE.100.042202.

A. Ion, L. Wall, R. Kovacs, and P. Baudisch, “Digital mechanical metamaterials,” in Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. CHI ’17, Denver, Colorado, USA, Association for Computing Machinery, 2017, pp. 977–988.

J. Ding and M. van Hecke, “Sequential snapping and pathways in a mechanical metamaterial,” J. Chem. Phys., vol. 156, no. 20, p. 204902, 2022. https://doi.org/10.1063/5.0087863.

J. Sylvestre and J. F. Morissette, “Neuromorphic metamaterial structures,” Mater. Des., vol. 210, p. 110078, 2021. https://doi.org/10.1016/j.matdes.2021.110078.

T. W. Hughes, I. A. D. Williamson, M. Minkov, and S. Fan, “Wave physics as an analog recurrent neural network,” Sci. Adv., vol. 5, no. 12, p. eaay6946, 2019. https://doi.org/10.1126/sciadv.aay6946.

K. Matlack, M. Serra-Garcia, A. Palermo, S. D. Huber, and C. Daraio, “Designing perturbative metamaterials from discrete models,” Nat. Mater., vol. 17, pp. 323–328, 2018. https://doi.org/10.1038/s41563-017-0003-3.

M. Serra-Garcia, V. Peri, R. Süsstrunk, et al.., “Observation of a phononic quadrupole topological insulator,” Nature, vol. 555, pp. 342–345, 2018. https://doi.org/10.1038/nature25156.

R. van Mastrigt, M. Dijkstra, M. van Hecke, and C. Coulais, “Machine learning of implicit combinatorial rules in mechanical metamaterials,” Phys. Rev. Lett., vol. 129, no. 19, p. 198003, 2022. https://doi.org/10.1103/PhysRevLett.129.198003.

N. Fang, D. Xi, J. Xu, et al.., “Ultrasonic metamaterials with negative modulus,” Nat. Mater., vol. 5, pp. 452–456, 2006. https://doi.org/10.1038/nmat1644.

R. V. Craster and S. Guenneau, Eds. Acoustic Metamaterials: Negative Refraction, Imaging, Lensing and Cloaking, vol. 166, Springer Science & Business Media, 2012.

S. A. Cummer and D. Schurig, “One path to acoustic cloaking,” New J. Phys., vol. 9, p. 45, 2007. https://doi.org/10.1088/1367-2630/9/3/045.

S. A. Cummer, M. Rahm, and D. Schurig, “Material parameters and vector scaling in transformation acoustics,” New J. Phys., vol. 10, p. 115025, 2008. https://doi.org/10.1088/1367-2630/10/11/115025.

D. Torrent and J. Sánchez-Dehesa, “Acoustic cloaking in two dimensions: a feasible approach,” New J. Phys., vol. 10, p. 063015, 2008. https://doi.org/10.1088/1367-2630/10/6/063015.

A. N. Norris, “Acoustic cloaking theory,” Proc. Math. Phys. Eng., vol. 464, no. 2097, pp. 2411–2434, 2008. https://doi.org/10.1098/rspa.2008.0076.

Z. Yang, J. Mei, M. Yang, N. H. Chan, and P. Sheng, “Membrane-type acoustic metamaterial with negative dynamic mass,” Phys. Rev. Lett., vol. 101, no. 20, p. 204301, 2008. https://doi.org/10.1103/physrevlett.101.204301.

J. M. G. Ma, G. Ma, M. Yang, Z. Yang, W. Wen, and P. Sheng, “Dark acoustic metamaterials as super absorbers for low-frequency sound,” Nat. Commun., vol. 3, no. 1, pp. 1–7, 2012. https://doi.org/10.1038/ncomms1758.

Z. Liang and J. Li, “Extreme acoustic metamaterial by coiling up space,” Phys. Rev. Lett., vol. 108, no. 11, p. 114301, 2012. https://doi.org/10.1103/physrevlett.108.114301.

M. Yang, S. Chen, C. Fu, and P. Sheng, “Optimal sound-absorbing structures,” Mater. Horiz., vol. 4, no. 4, pp. 673–680, 2017. https://doi.org/10.1039/c7mh00129k.

S. Chen, Y. Fan, Q. Fu, et al.., “A review of tunable acoustic metamaterials,” Appl. Sci., vol. 8, no. 9, p. 1480, 2018. https://doi.org/10.3390/app8091480.

N. Gao, Z. Zhang, J. Deng, X. Guo, B. Cheng, and H. Hou, “Acoustic metamaterials for noise reduction: a review,” Adv. Mater. Technol., vol. 7, no. 6, p. 2100698, 2022, https://doi.org/10.1002/admt.202100698.

T. Zhang, E. Bok, M. Tomoda, et al.., “Compact acoustic metamaterial based on the 3D Mie resonance of a maze ball with an octahedral structure,” Appl. Phys. Lett., vol. 120, p. 161701, 2022. https://doi.org/10.1063/5.0084030.

Z. Xiao, P. Gao, D. Wang, X. He, and L. Wu, “Ventilated metamaterials for broadband sound insulation and tunable transmission at low frequency,” Extreme Mech. Lett., vol. 46, p. 101348, 2021. https://doi.org/10.1016/j.eml.2021.101348.

A. O. Krushynska, F. Bosia, M. Miniaci, and N. M. Pugno, “Spider web-structured labyrinthine acoustic metamaterials for low-frequency sound control,” New J. Phys., vol. 19, p. 105001, 2017. https://doi.org/10.1088/1367-2630/aa83f3.

G. Ji, Y. Fang, and J. Zhou, “Porous acoustic metamaterials in an inverted wedge shape,” Extreme Mech. Lett., vol. 36, p. 100648, 2020. https://doi.org/10.1016/j.eml.2020.100648.

N. Gao, H. Hou, Y. Zhang, and J. H. Wu, “Sound absorption of a new oblique-section acoustic metamaterial with nested resonator,” Mod. Phys. Lett. B, vol. 32, p. 1850040, 2018. https://doi.org/10.1142/s0217984918500409.

T. J. Cox and Y. W. Lam, “Prediction and evaluation of the scattering from quadratic residue diffusers,” J. Acoust. Soc. Am., vol. 95, pp. 297–305, 1994. https://doi.org/10.1121/1.408361.

M. R. Schroeder, “Binaural dissimilarity and optimum ceilings for concert halls: more lateral sound diffusion,” J. Acoust. Soc. Am., vol. 65, p. 958, 1979. https://doi.org/10.1121/1.382601.

J. Kang and M. R. Haberman, “Sound diffusion with spatiotemporally modulated acoustic metasurfaces,” Appl. Phys. Lett., vol. 121, p. 181703, 2022. https://doi.org/10.1063/5.0097590.

X. Wang, A. Díaz-Rubio, H. Li, S. A. Tretyakov, and A. Alù, “Theory and design of multifunctional space-time metasurfaces,” Phys. Rev. Appl., vol. 13, no. 4, p. 044040, 2020. https://doi.org/10.1103/PhysRevApplied.13.044040.

H. Nassar, B. Yousefzadeh, R. Fleury, et al.., “Nonreciprocity in acoustic and elastic materials,” Nat. Rev. Mater., vol. 5, pp. 667–685, 2020. https://doi.org/10.1038/s41578-020-0206-0.

B. M. Goldsberry, S. P. Wallen, and M. R. Haberman, “Nonreciprocal vibrations of finite elastic structures with spatiotemporally modulated material properties,” Phys. Rev. B, vol. 102, p. 014312, 2020. https://doi.org/10.1103/physrevb.102.014312.

E. Rivet, A. Brandstötter, K. G. Makris, H. Lissek, S. Rotter, and R. Fleury, “Constant-pressure sound waves in non-Hermitian disordered media,” Nat. Phys., vol. 14, no. 9, pp. 942–947, 2018. https://doi.org/10.1038/s41567-018-0188-7.

C. Shen, J. Li, X. Peng, and S. A. Cummer, “Synthetic exceptional points and unidirectional zero reflection in non-Hermitian acoustic systems,” Phys. Rev. Mater., vol. 2, no. 12, p. 125203, 2018. https://doi.org/10.1103/physrevmaterials.2.125203.

M. Wang, L. Ye, J. Christensen, and Z. Liu, “Valley physics in non-Hermitian artificial acoustic boron nitride,” Phys. Rev. Lett., vol. 120, no. 24, p. 246601, 2018. https://doi.org/10.1103/physrevlett.120.246601.

H. Gao, H. Xue, Z. Gu, T. Liu, J. Zhu, and B. Zhang, “Non-Hermitian route to higher-order topology in an acoustic crystal,” Nat. Commun., vol. 12, no. 1, pp. 1–7, 2021. https://doi.org/10.1038/s41467-021-22223-y.

B. I. Popa and S. A. Cummer, “Non-reciprocal and highly nonlinear active acoustic metamaterials,” Nat. Commun., vol. 5, no. 1, pp. 1–5, 2014. https://doi.org/10.1038/ncomms4398.

Z. Yang, Y. Yang, and B. Zhang, “Topological acoustics,” Phys. Rev. Lett., vol. 114, no. 11, p. 114301, 2015. https://doi.org/10.1103/physrevlett.114.114301.

H. Xue, Y. Yang, and B. Zhang, “Topological acoustics,” Nat Rev Mater., vol. 7, pp. 974–990, 2022, https://doi.org/10.1038/s41578-022-00465-6.

C. Shen, X. Zhu, J. Li, and S. A. Cummer, “Nonreciprocal acoustic transmission in space-time modulated coupled resonators,” Phys. Rev. B, vol. 100, no. 5, p. 054302, 2019. https://doi.org/10.1103/physrevb.100.054302.

Z. Chen, Y. Peng, H. Li, et al.., “Efficient nonreciprocal mode transitions in spatiotemporally modulated acoustic metamaterials,” Sci. Adv., vol. 7, no. 45, p. eabj1198, 2021. https://doi.org/10.1126/sciadv.abj1198.

X. Xu, Q. Wu, H. Chen, et al.., “Physical observation of a robust acoustic pumping in waveguides with dynamic boundary,” Phys. Rev. Lett., vol. 125, no. 25, p. 253901, 2020. https://doi.org/10.1103/physrevlett.125.253901.

R. Fleury, D. L. Sounas, and A. Alù, “Parity–time symmetry in acoustics: theory, devices, and potential applications,” IEEE J. Sel. Top. Quantum Electron., vol. 22, pp. 121–129, 2016. https://doi.org/10.1109/jstqe.2016.2549512.

V. Achilleos, G. Theocharis, O. Richoux, and V. Pagneux, “Non-Hermitian acoustic metamaterials: role of exceptional points in sound absorption,” Phys. Rev. B, vol. 95, p. 144303, 2017. https://doi.org/10.1103/physrevb.95.144303.

C. Shi, M. Dubois, Y. Chen, et al.., “Accessing the exceptional points of parity-time symmetric acoustics,” Nat. Commun., vol. 7, pp. 1–5, 2016. https://doi.org/10.1038/ncomms11110.

H. Xue, Y. Yang, F. Gao, Y. Chong, and B. Zhang, “Acoustic higher-order topological insulator on a kagome lattice,” Nat. Mater., vol. 18, pp. 108–112, 2019. https://doi.org/10.1038/s41563-018-0251-x.

X. Ni, M. Weiner, A. Alù, and A. B. Khanikaev, “Observation of higher-order topological acoustic states protected by generalized chiral symmetry,” Nat. Mater., vol. 18, pp. 113–120, 2019. https://doi.org/10.1038/s41563-018-0252-9.

B. Hu, Z. Zhang, H. Zhang, et al.., “Non-Hermitian topological whispering gallery,” Nature, vol. 597, p. 655, 2021. https://doi.org/10.1038/s41586-021-03833-4.

H. Nassar, X. C. Xu, A. N. Norris, and G. L. Huang, “Modulated phononic crystals: non-reciprocal wave propagation and Willis materials,” J. Mech. Phys. Solids, vol. 101, pp. 10–29, 2017. https://doi.org/10.1016/j.jmps.2017.01.010.

A. Merkel, V. Tournat, and V. Gusev, “Directional asymmetry of the nonlinear wave phenomena in a three-dimensional granular phononic crystal under gravity,” Phys. Rev. E, vol. 90, no. 2, p. 023206, 2014. https://doi.org/10.1103/PhysRevE.90.023206.

R. Fleury, D. L. Sounas, C. F. Sieck, M. R. Haberman, and A. Alù, “Sound isolation and giant linear nonreciprocity in a compact acoustic circulator,” Science, vol. 343, p. 6170, 2014. https://doi.org/10.1126/science.1246957.

G. W. Swift, “Chapter 4. Waves,” in Thermoacoustics: A Unifying Perspective for Some Engines and Refrigerators, Springer Cham, 2017, pp. 77–116.

J. R. Willis, “Variational principles for dynamic problems for inhomogeneous elastic media,” Wave Motion, vol. 3, no. 1, pp. 1–11, 1981. https://doi.org/10.1016/0165-2125(81)90008-1.

J. P. Groby, M. Malléjac, A. Merkel, et al.., “Analytical modeling of one-dimensional resonant asymmetric and reciprocal acoustic structures as Willis materials,” New J. Phys., vol. 23, p. 053020, 2021. https://doi.org/10.1088/1367-2630/abfab0.

C. Olivier, G. Poignand, M. Malléjac, et al.., “Nonreciprocal and even Willis couplings in periodic thermoacoustic amplifiers,” Phys. Rev. B, vol. 104, p. 184109, 2021. https://doi.org/10.1103/physrevb.104.184109.

Y. Chen, M. Kadic, and M. Wegener, “Roton-like acoustical dispersion relations in 3D metamaterials,” Nat. Commun., vol. 12, p. 3278, 2021. https://doi.org/10.1038/s41467-021-23574-2.

J. Li, A. Crivoi, X. Peng, et al.., “Three dimensional acoustic tweezers with acoustic vortex streaming,” Commun. Phys., vol. 4, p. 113, 2021. https://doi.org/10.1038/s42005-021-00617-0.

J. Li, T. J. Huang, and S. A. Cummer, “Acoustic tweezer with complex boundary-free trapping and transport channel controlled by shadow waveguides,” Sci. Adv., vol. 7, p. eabi5502, 2021. https://doi.org/10.1126/sciadv.abi5502.

B. Assouar, B. Liang, Y. Wu, Y. Li, J. C. Cheng, and Y. Jing, “Acoustic metasurfaces,” Nat. Rev. Mater., vol. 3, pp. 460–472, 2018. https://doi.org/10.1038/s41578-018-0061-4.

J. Lan, Y. Li, Y. Xu, and X. Liu, “Manipulation of acoustic wavefront by gradient metasurface based on Helmholtz Resonators,” Sci. Rep., vol. 7, pp. 1–9, 2017. https://doi.org/10.1038/s41598-017-10781-5.

Z. Tian, C. Shen, J. Li, et al.., “Programmable acoustic metasurfaces,” Adv. Funct. Mater., vol. 29, p. 1808489, 2019. https://doi.org/10.1002/adfm.201808489.

H. Zou, P. Li, and P. Peng, “An ultra-thin acoustic metasurface with multiply resonant units,” Phys. Lett. A, vol. 384, p. 126151, 2020. https://doi.org/10.1016/j.physleta.2019.126151.

V. Romero-García, G. Theocharis, O. Richoux, A. Merkel, V. Tournat, and V. Pagneux, “Perfect and broadband acoustic absorption by critically coupled sub-wavelength resonators,” Sci. Rep., vol. 6, pp. 1–8, 2016. https://doi.org/10.1038/srep19519.

R. Sabat, et al.., “Coupling Helmholtz resonators for sound manipulation,” in 2021 Fifteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials), vol. 1, IEEE, 2021, pp. 328–330.

G. J. Chaplain and R. V. Craster, “Ultrathin entirely flat Umklapp lenses,” Phys. Rev. B, vol. 101, p. 155430, 2016. https://doi.org/10.1103/physrevb.101.155430.

G. J. Chaplain, I. R. Hooper, and T. A. Starkey, “Multi-scale bullseye antennas,” Philos. Trans. R. Soc., A, vol. 380, no. 2231, p. 20210402, 2022. https://doi.org/10.1098/rsta.2021.0402.

G. J. Chaplain, J. M. De Ponti, A. Colombi, et al.., “Tailored elastic surface to body wave Umklapp conversion,” Nat. Commun., vol. 11, p. 3267, 2020. https://doi.org/10.1038/s41467-020-17021-x.

G. J. Chaplain, R. V. Craster, N. Cole, A. P. Hibbins, and T. A. Starkey, “Underwater focusing of sound by Umklapp diffraction,” Phys. Rev. Appl., vol. 16, p. 064029, 2021. https://doi.org/10.1103/physrevapplied.16.064029.

B. Assouar, M. Oudich, and X. Zhou, “Acoustic metamaterials for sound mitigation,” C. R. Phys., vol. 17, pp. 524–532, 2016. https://doi.org/10.1016/j.crhy.2016.02.002.

D. Roca and M. I. Hussein, “Broadband and intense sound transmission loss by a coupled-resonance acoustic metamaterial,” Phys. Rev. Appl., vol. 16, p. 054018, 2021. https://doi.org/10.1103/physrevapplied.16.054018.

G. Ma, X. Fan, P. Sheng, and M. Fink, “Shaping reverberating sound fields with an actively tunable metasurface,” Proc. Natl. Acad. Sci. U. S. A., vol. 115, no. 26, pp. 6638–6643, 2018. https://doi.org/10.1073/pnas.1801175115.

Z. G. Chen, R. Y. Zhang, C. T. Chan, and G. Ma, “Classical non-Abelian braiding of acoustic modes,” Nat. Phys., vol. 18, no. 2, pp. 179–184, 2022. https://doi.org/10.1038/s41567-021-01431-9.

S. Jiménez-Gambín, N. Jiménez, J. M. Benlloch, and F. Camarena, “Holograms to focus arbitrary ultrasonic fields through the skull,” Phys. Rev. Appl., vol. 12, p. 014016, 2019. https://doi.org/10.1103/physrevapplied.12.014016.

D. Andrés, N. Jiménez, J. M. Benlloch, and F. Camarena, “Numerical study of acoustic holograms for deep-brain targeting through the temporal bone window,” Ultrasound Med. Biol., vol. 48, no. 5, pp. 872–886, 2022. https://doi.org/10.1016/j.ultrasmedbio.2022.01.010.

S. Jiménez-Gambín, N. Jiménez, and F. Camarena, “Transcranial focusing of ultrasonic vortices by acoustic holograms,” Phys. Rev. Appl., vol. 14, no. 5, p. 054070, 2020. https://doi.org/10.1103/PhysRevApplied.14.054070.

S. Jiménez-Gambín, N. Jimenez, A. Pouliopoulos, J. M. Benlloch, E. Konofagou, and F. Camarena, “Acoustic holograms for bilateral blood-brain barrier opening in a mouse model,” IEEE Trans. Biomed. Eng., vol. 69, no. 4, pp. 1359–1368, 2022. https://doi.org/10.1109/TBME.2021.3115553.

D. Andrés, J. Vappou, N. Jiménez, and F. Camarena, “Thermal holographic patterns for ultrasound hyperthermia,” Appl. Phys. Lett., vol. 120, no. 8, p. 084102, 2022. https://doi.org/10.1063/5.0081565.

K. E. Evans and A. Alderson, “Auxetic materials: functional materials and structures from lateral thinking,” Adv. Mater., vol. 12, pp. 617–628, 2000. https://doi.org/10.1002/(sici)1521-4095(200005)12:9<617::aid-adma617>3.0.co;2-3.

M. J. Mirzaali, S. Janbaz, M. Strano, L. Vergani, and A. A. Zadpoor, “Shape-matching soft mechanical metamaterials,” Sci. Rep., vol. 8, p. 965, 2018. https://doi.org/10.1038/s41598-018-19381-3.

R. Hedayati, M. J. Mirzaali, L. Vergani, and A. A. Zadpoor, “Action-at-a-distance metamaterials: distributed local actuation through far-field global forces,” APL Mater., vol. 6, p. 036101, 2018. https://doi.org/10.1063/1.5019782.

B. Florijn, C. Coulais, and M. van Hecke, “Programmable mechanical metamaterials,” Phys. Rev. Lett., vol. 113, p. 175503, 2014. https://doi.org/10.1103/physrevlett.113.175503.

S. Janbaz, F. S. L. Bobbert, M. J. Mirzaali, and A. A. Zadpoor, “Ultra-programmable buckling-driven soft cellular mechanisms,” Mater. Horiz., vol. 6, pp. 1138–1147, 2019. https://doi.org/10.1039/c9mh00125e.

L. Jin, A. E. Forte, B. Deng, A. Rafsanjani, and K. Bertoldi, “Kirigami-inspired inflatables with programmable shapes,” Adv. Mater., vol. 32, p. 2001863, 2020. https://doi.org/10.1002/adma.202001863.

M. Naghavi Zadeh, F. Alijani, X. Chen, et al.., “Dynamic characterization of 3D printed mechanical metamaterials with tunable elastic properties,” Appl. Phys. Lett., vol. 118, p. 211901, 2021. https://doi.org/10.1063/5.0047617.

J. O. Cardoso, J. P. Borges, and A. Velhinho, “Structural metamaterials with negative mechanical/thermomechanical indices: a review,” Prog. Nat. Sci., vol. 31, pp. 801–808, 2021. https://doi.org/10.1016/j.pnsc.2021.10.015.

M. J. Khoshgoftar, A. Barkhordari, S. Seifoori, and M. J. Mirzaali, “Elasticity approach to predict shape transformation of functionally graded mechanical metamaterial under tension,” Materials, vol. 14, p. 3452, 2021. https://doi.org/10.3390/ma14133452.

Z. Zhang and A. O. Krushynska, “Programmable shape-morphing of rose-shaped mechanical metamaterials,” APL Mater., vol. 10, no. 8, p. 080701, 2022. https://doi.org/10.1063/5.0099323.

M. J. Mirzaali, A. Ghorbani, K. Nakatani, et al.., “Curvature induced by deflection in thick meta-plates,” Adv. Mater., vol. 33, p. 2008082, 2021. https://doi.org/10.1002/adma.202008082.

M. J. Mirzaali, H. Pahlavani, and A. A. Zadpoor, “Auxeticity and stiffness of random networks: lessons for the rational design of 3D printed mechanical metamaterials,” Appl. Phys. Lett., vol. 115, p. 021901, 2019. https://doi.org/10.1063/1.5096590.

H. M. A. Kolken, S. J. P. Callens, M. A. Leeflang, M. J. Mirzaali, and A. A. Zadpoor, “Merging strut-based and minimal surface meta-biomaterials: decoupling surface area from mechanical properties,” Addit. Manuf., vol. 52, p. 102684, 2022. https://doi.org/10.1016/j.addma.2022.102684.

M. J. Mirzaali, R. Hedayati, P. Vena, et al.., “Rational design of soft mechanical metamaterials: independent tailoring of elastic properties with randomness,” Appl. Phys. Lett., vol. 111, p. 051903, 2017. https://doi.org/10.1063/1.4989441.

C. P. Goodrich, A. J. Liu, and S. R. Nagel, “The principle of independent bond-level response: tuning by pruning to exploit disorder for global behavior,” Phys. Rev. Lett., vol. 114, p. 225501, 2015. https://doi.org/10.1103/physrevlett.114.225501.

M. J. Mirzaali, A. Caracciolo, H. Pahlavani, S. Janbaz, L. Vergani, and A. A. Zadpoor, “Multi-material 3D printed mechanical metamaterials: rational design of elastic properties through spatial distribution of hard and soft phases,” Appl. Phys. Lett., vol. 113, p. 241903, 2018. https://doi.org/10.1063/1.5064864.

H. Pahlavani, M. Amani, M. C. Saldívar, J. Zhou, M. J. Mirzaali, and A. A. Zadpoor, “Deep learning for the rare-event rational design of 3D printed multi-material mechanical metamaterials,” Commun. Mater., vol. 3, p. 46, 2022. https://doi.org/10.1038/s43246-022-00270-2.

M. J. Mirzaali, H. Pahlavani, E. Yarali, and A. A. Zadpoor, “Non-affinity in multi-material mechanical metamaterials,” Sci. Rep., vol. 10, p. 11488, 2020. https://doi.org/10.1038/s41598-020-67984-6.

D. M. Kochmann and K. Bertoldi, “Exploiting microstructural instabilities in solids and structures: from metamaterials to structural transitions,” Appl. Mech. Rev., vol. 69, p. 050801, 2017. https://doi.org/10.1115/1.4037966.

Y. Li, N. Kaynia, S. Rudykh, and M. C. Boyce, “Wrinkling of interfacial layers in stratified composites,” Adv. Eng. Mater., vol. 15, pp. 921–926, 2013.

J. Li, V. Slesarenko, and S. Rudykh, “Emergence of instability-driven domains in soft stratified materials,” npj Comput. Mater., vol. 8, p. 100, 2022. https://doi.org/10.1038/s41524-022-00783-x.

V. Slesarenko and S. Rudykh, “Microscopic and macroscopic instabilities in hyperelastic fiber composites,” J. Mech. Phys. Solids, vol. 99, p. 471, 2017. https://doi.org/10.1016/j.jmps.2016.11.002.

N. Arora, J. Li, and S. Rudykh, “Tunable buckling configurations via in-plane periodicity in soft 3D-fiber composites: simulations and experiments,” Int. J. Solids Struct., vol. 250, p. 111711, 2022. https://doi.org/10.1016/j.ijsolstr.2022.111711.

J. Li, T. D. Pallicity, V. Slesarenko, A. Goshkoderia, and S. Rudykh, “Domain formations and pattern transitions via instabilities in soft heterogeneous materials,” Adv. Mater., vol. 31, p. 1807309, 2019. https://doi.org/10.1002/adma.201807309.

J. Li, V. Slesarenko, and S. Rudykh, “Auxetic multiphase soft composite material design through instabilities with application for acoustic metamaterials,” Soft Matter, vol. 14, pp. 6171–6180, 2018. https://doi.org/10.1039/c8sm00874d.

J. Li and S. Rudykh, “Tunable microstructure transformations and auxetic behavior in 3D-printed multiphase composites: the role of inclusion distribution,” Composites, Part B, vol. 172, p. 352, 2019. https://doi.org/10.1016/j.compositesb.2019.05.012.

V. Slesarenko and S. Rudykh, “Harnessing viscoelasticity and instabilities for tuning wavy patterns in soft layered composites,” Soft Matter, vol. 12, pp. 3677–3682, 2016. https://doi.org/10.1039/c5sm02949j.

D. M. J. Dykstra, S. Janbaz, and C. Coulais, “The extreme mechanics of viscoelastic metamaterials,” APL Mater., vol. 10, no. 8, p. 080702, 2022. https://doi.org/10.1063/5.0094224.

D. M. J. Dykstra, J. Busink, B. Ennis, and C. Coulais, “Viscoelastic snapping metamaterials,” J. Appl. Mech., vol. 86, p. 11, 2019. https://doi.org/10.1115/1.4044036.

S. Janbaz, K. Narooei, T. van Manen, and A. A. Zadpoor, “Strain rate–dependent mechanical metamaterials,” Sci. Adv., vol. 6, p. eaba0616, 2020. https://doi.org/10.1126/sciadv.aba0616.

S. Janbaz, D. Fan, M. Ganjian, T. van Manen, U. Staufer, and A. A. Zadpoor, “3D printable strain rate-dependent machine-matter,” arXiv:2206.15168, 2022.

A. Bossart, D. M. J. Dykstra, J. van der Laan, and C. Coulais, “Oligomodal metamaterials with multifunctional mechanics,” Proc. Natl. Acad. Sci., vol. 118, p. e2018610118, 2021. https://doi.org/10.1073/pnas.2018610118.

H. M. A. Kolken, S. Janbaz, S. M. A. Leeflang, K. Lietaert, H. H. Weinans, and A. A. Zadpoor, “Rationally designed meta-implants: a combination of auxetic and conventional meta-biomaterials,” Mater. Horiz., vol. 5, pp. 28–35, 2018. https://doi.org/10.1039/c7mh00699c.

O. R. Bilal, V. Costanza, A. Israr, et al.., “A flexible spiraling-metasurface as a versatile haptic interface,” Adv. Mater. Technol., vol. 5, no. 8, p. 2000181, 2020. https://doi.org/10.1002/admt.202000181.

A. E. M. Schmerbauch, A. O. Krushynska, A. I. Vakis, and B. Jayawardhana, “Modular kirigami arrays for distributed actuation systems in adaptive optics,” Phys. Rev. Appl., vol. 17, p. 044012, 2022. https://doi.org/10.1103/physrevapplied.17.044012.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem