- -

On the applicability of cold acoustic measurements to high-amplitude hot pulsating flows

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On the applicability of cold acoustic measurements to high-amplitude hot pulsating flows

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Torregrosa, A. J. es_ES
dc.contributor.author Piqueras, P. es_ES
dc.contributor.author Sanchis Pacheco, Enrique José es_ES
dc.contributor.author Redondo-Navarro, Álvaro Rafael es_ES
dc.date.accessioned 2023-06-23T18:01:45Z
dc.date.available 2023-06-23T18:01:45Z
dc.date.issued 2023-03 es_ES
dc.identifier.issn 0814-6039 es_ES
dc.identifier.uri http://hdl.handle.net/10251/194504
dc.description.abstract [EN] The experimental characterization of the acoustic characteristics of engine exhaust devices is usually carried out through measurements in cold conditions, due to the intrinsic difficulties associated with proper temperature control in an acoustic rig. While those measurements may be sufficiently indicative for the cold end of the exhaust (the silencing elements) their significance for the hot end (the aftertreatment system) is more doubtful, as a result of the high temperatures and, eventually, the higher amplitude of pressure waves acting on the system. In this paper, a direct assessment is provided on the significance of acoustic measurements in cold conditions for representing the actual behaviour of an aftertreatment system in a hot pulsating, engine-like flow. Making use of wave decomposition techniques, the measured characterization was convoluted with the hot-flow excitation and the device responses were directly compared. The results indicate that, while it is not possible to fully reproduce the behaviour observed in hot pulsating flow, the tendencies are reproduced, at least qualitatively. In particular, the effect of soot loading is fairly reproduced. es_ES
dc.description.sponsorship This research has been supported by Grant PID2020114289RB-I00 funded by MCIN/AEI/https://doi.org/10.13039/501100011033.Alvaro Redondo is supported by Universitat Politecnica de Valencia through the Programa de Ayudas de Investigacion y Desarrollo (PAID-01-19) which grants his predoctoral contract. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Acoustics Australia es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Acoustics es_ES
dc.subject Experimental characterization es_ES
dc.subject Pulsating flow es_ES
dc.subject Aftertreatment system es_ES
dc.subject Temperature es_ES
dc.subject Wave decomposition es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title On the applicability of cold acoustic measurements to high-amplitude hot pulsating flows es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s40857-022-00282-5 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-114289RB-I00/ES/INTEGRACION DE SISTEMAS DE POST-TRATAMIENTO DE GASES DE ESCAPE MULTIFUNCIONALES EN VEHICULOS DE PROPULSION HIBRIDA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-01-19/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Politécnica Superior de Alcoy - Escola Politècnica Superior d'Alcoi es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny es_ES
dc.description.bibliographicCitation Torregrosa, AJ.; Piqueras, P.; Sanchis Pacheco, EJ.; Redondo-Navarro, ÁR. (2023). On the applicability of cold acoustic measurements to high-amplitude hot pulsating flows. Acoustics Australia. 51(1):115-128. https://doi.org/10.1007/s40857-022-00282-5 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s40857-022-00282-5 es_ES
dc.description.upvformatpinicio 115 es_ES
dc.description.upvformatpfin 128 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 51 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\478757 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Hooftman, N., Messagie, M., Van Mierlo, J., Coosemans, T.: A review of the European passenger car regulations—real driving emissions vs local air quality. Renew. Sust. Energ. Rev. 86, 1–21 (2018) es_ES
dc.description.references Paredi, D., Lucchini, T., D’Errico, G., Onorati, A., Pickett, L., Lacey, J.: CFD modeling of spray evolution for spark-ignition, direct injection engines. AIP Conf. Proc. 2191, 020125 (2019) es_ES
dc.description.references Telli, G.D., Altafini, C.R., Costa, C.A., Rosa, J.S., Martins, M.E., Rocha, L.A.O.: A comprehensive review of homogeneous charge compression ignition (HCCI) engines: advantages, challenges and evolution. SAE Technical Paper 2020-36-0042 (2021) es_ES
dc.description.references Pla, B., Piqueras, P., Bares, P., Aronis, A.: Simultaneous NOx and NH3 slip prediction in a SCR catalyst under real driving conditions including potential urea injection failures. Int. J. Engine Res. 23(7), 1213–1225 (2022) es_ES
dc.description.references Bermúdez, V., Ruiz, S., Conde, B., Soto, L.: Analysis of the aftertreatment performance in HD-SI engine fueled with LPG. Int. J. Engine Res. (2020). https://doi.org/10.1177/14680874211048138 es_ES
dc.description.references Piqueras, P., Burke, R., Sanchis, E.J., Diesel, B.: Fuel efficiency optimisation based on boosting control of the particulate filter active regeneration at high driving altitude. Fuel 319, 123734 (2022) es_ES
dc.description.references Piqueras, P., Sanchis, E.J., Herreros, J.M., Tsolakis, A.: Evaluating the oxidation kinetic parameters of gasoline direct injection soot from thermogravimetric analysis experiments. Chem. Eng. Sci. 234, 116437 (2021) es_ES
dc.description.references Matarrese, R.: Catalytic materials for gasoline particulate filters soot oxidation. Catalysts 11, 890 (2021) es_ES
dc.description.references Farhan, S.M., Wang, P.: Post-injection strategies for performance improvement and emissions reduction in DI diesel engines—a review. Fuel Process. Technol. 228, 107145 (2022) es_ES
dc.description.references Serrano, J.R., Piqueras, P., De la Morena, J., Sanchis, E.J.: Late fuel post-injection influence on the dynamics and efficiency of wall-flow particulate filters regeneration. Appl. Sci. 9, 5384 (2019) es_ES
dc.description.references Cherkkil, A., Rathor, A.: Design and optimization of a muffler integrated with an adaptive quarter wave tube for noise reduction in commercial vehicles. SAE Technical Paper 2020-01-0507 (2020) es_ES
dc.description.references Jiang, C., Wu, T.W., Xu, M.B., Cheng, C.Y.R.: BEM modeling of mufflers with diesel particulate filters and catalytic converters. Noise Control Eng. J. 58, 243–250 (2010) es_ES
dc.description.references Glav, R., Boden, H., Abom, M.: An acoustic model for automobile catalytic converters. Proc. Int. Noise 88, 1261–1266 (1988) es_ES
dc.description.references Hua, X., Herrin, D.W., Wu, T.W., Elnady, T.: Simulation of diesel particulate filters in large exhaust systems. Appl. Acoust. 74, 1326–1332 (2013) es_ES
dc.description.references Torregrosa, A.J., Arnau, F.J., Piqueras, P., Sanchis, E.J., Tartoussi, H.: Phenomenological methodology for assessing the influence of flow conditions on the acoustic response of exhaust aftertreatment systems. J. Sound Vib. 396, 289–306 (2017) es_ES
dc.description.references Montenegro, G., Onorati, A., Della Torre, A., Torregrosa, A.J.: The 3Dcell approach for the acoustic modeling of after-treatment devices. SAE Int. J. Engines 4, 2519–2530 (2011) es_ES
dc.description.references Allam, S., Abom, M.: Acoustic modelling and testing of diesel particulate filters. J. Sound Vib. 288, 255–273 (2005) es_ES
dc.description.references Astley, R.J., Cummings, A.: Wave propagation in catalytic converters: formulation of the problem and finite element to solution scheme. J. Sound Vib. 188, 635–657 (1995) es_ES
dc.description.references Allam, S., Abom, M.: Sound propagation in an array of narrow porous channels with application to diesel particulate filters. J. Sound Vib. 291, 882–901 (2006) es_ES
dc.description.references Wenzhi, G., Liming, F., Wenbo, N., Hui, W.: Theoretical and experimental investigations on diesel particulate filters. Noise Control Eng. J. 56, 282–287 (2008) es_ES
dc.description.references Ferrara, G., Vichi, G., Lenzi, G., Biliotti, D.: Acoustic characterization of automotive mufflers—Part I: test rig design and evaluation of acoustic properties. SAE Technical Paper 2012-01-0800 (2012) es_ES
dc.description.references Drant, J., Micheau, P., Berry, A.: Active noise control of higher modes in a duct using near field compensation and a ring of harmonic acoustic pneumatic sources. Appl. Acoust. 188, 108583 (2022) es_ES
dc.description.references Abom, M.: Measurement of the scattering-matrix of acoustical 2-ports. Mech Syst. Signal Process. 5, 89–104 (1991) es_ES
dc.description.references Chung, J.Y., Blaser, D.A.: Transfer function method of measuring in-duct acoustic properties. II. Experiment. J. Acoust. Soc. Am. 68, 914–921 (1980) es_ES
dc.description.references Torregrosa, A.J., Broatch, A., García-Tíscar, J., Roig, F.: Experimental verification of hydrodynamic similarity in hot flows. Exp. Therm. Fluid Sci. 119, 110220 (2020) es_ES
dc.description.references Payri, F., Desantes, J.M., Broatch, A.: Modified impulse method for the measurement of the frequency response of acoustic filters to weakly nonlinear transient excitations. J. Acoust. Soc. Am. 107, 731–738 (2000) es_ES
dc.description.references Bannister, F.K., Muklow, G.F.: Wave action following sudden release of compressed gas from a cylinder. Proc. Inst. Mech. Eng. 159, 269–287 (1948) es_ES
dc.description.references Torregrosa, A.J., Piqueras, P., Sanchis, E.J., Guilain, S., Dubarry, M.: Assessment of acoustic reciprocity and conservativeness in exhaust aftertreatment systems. J. Sound Vib. 436, 46–62 (2018) es_ES
dc.description.references Piñero, G., Vergara, L., Desantes, J.M., Broatch, A.: Estimation of velocity fluctuation in internal combustion engine exhaust systems through beam forming techniques. Meas. Sci. Technol. 11, 1585–1595 (2000) es_ES
dc.description.references Piumetti, M., van der Linden, B., Makkee, M., Miceli, P., Fino, D., Russo, N., Bensaid, S.: Contact dynamics for a solid–solid reaction mediated by gas-phase oxygen: study on the soot oxidation over ceria-based catalysts. Appl. Catal. B 199, 96–107 (2016) es_ES
dc.description.references Payri, F., Desantes, J.M., Torregrosa, A.J.: Acoustic boundary condition for unsteady one-dimensional flow calculations. J. Sound Vib. 188, 85–110 (1995) es_ES
dc.description.references Morel, T., Silvestri, J., Goerg, K., Jebasinski, R.: Modeling of engine exhaust acoustics. SAE Technical Paper 1999-01-1665 (1999) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem