Mostrar el registro sencillo del ítem
dc.contributor.author | Torregrosa, A. J. | es_ES |
dc.contributor.author | Piqueras, P. | es_ES |
dc.contributor.author | Sanchis Pacheco, Enrique José | es_ES |
dc.contributor.author | Redondo-Navarro, Álvaro Rafael | es_ES |
dc.date.accessioned | 2023-06-23T18:01:45Z | |
dc.date.available | 2023-06-23T18:01:45Z | |
dc.date.issued | 2023-03 | es_ES |
dc.identifier.issn | 0814-6039 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/194504 | |
dc.description.abstract | [EN] The experimental characterization of the acoustic characteristics of engine exhaust devices is usually carried out through measurements in cold conditions, due to the intrinsic difficulties associated with proper temperature control in an acoustic rig. While those measurements may be sufficiently indicative for the cold end of the exhaust (the silencing elements) their significance for the hot end (the aftertreatment system) is more doubtful, as a result of the high temperatures and, eventually, the higher amplitude of pressure waves acting on the system. In this paper, a direct assessment is provided on the significance of acoustic measurements in cold conditions for representing the actual behaviour of an aftertreatment system in a hot pulsating, engine-like flow. Making use of wave decomposition techniques, the measured characterization was convoluted with the hot-flow excitation and the device responses were directly compared. The results indicate that, while it is not possible to fully reproduce the behaviour observed in hot pulsating flow, the tendencies are reproduced, at least qualitatively. In particular, the effect of soot loading is fairly reproduced. | es_ES |
dc.description.sponsorship | This research has been supported by Grant PID2020114289RB-I00 funded by MCIN/AEI/https://doi.org/10.13039/501100011033.Alvaro Redondo is supported by Universitat Politecnica de Valencia through the Programa de Ayudas de Investigacion y Desarrollo (PAID-01-19) which grants his predoctoral contract. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Acoustics Australia | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Acoustics | es_ES |
dc.subject | Experimental characterization | es_ES |
dc.subject | Pulsating flow | es_ES |
dc.subject | Aftertreatment system | es_ES |
dc.subject | Temperature | es_ES |
dc.subject | Wave decomposition | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | On the applicability of cold acoustic measurements to high-amplitude hot pulsating flows | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s40857-022-00282-5 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-114289RB-I00/ES/INTEGRACION DE SISTEMAS DE POST-TRATAMIENTO DE GASES DE ESCAPE MULTIFUNCIONALES EN VEHICULOS DE PROPULSION HIBRIDA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-01-19/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Politécnica Superior de Alcoy - Escola Politècnica Superior d'Alcoi | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny | es_ES |
dc.description.bibliographicCitation | Torregrosa, AJ.; Piqueras, P.; Sanchis Pacheco, EJ.; Redondo-Navarro, ÁR. (2023). On the applicability of cold acoustic measurements to high-amplitude hot pulsating flows. Acoustics Australia. 51(1):115-128. https://doi.org/10.1007/s40857-022-00282-5 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s40857-022-00282-5 | es_ES |
dc.description.upvformatpinicio | 115 | es_ES |
dc.description.upvformatpfin | 128 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 51 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.pasarela | S\478757 | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | Hooftman, N., Messagie, M., Van Mierlo, J., Coosemans, T.: A review of the European passenger car regulations—real driving emissions vs local air quality. Renew. Sust. Energ. Rev. 86, 1–21 (2018) | es_ES |
dc.description.references | Paredi, D., Lucchini, T., D’Errico, G., Onorati, A., Pickett, L., Lacey, J.: CFD modeling of spray evolution for spark-ignition, direct injection engines. AIP Conf. Proc. 2191, 020125 (2019) | es_ES |
dc.description.references | Telli, G.D., Altafini, C.R., Costa, C.A., Rosa, J.S., Martins, M.E., Rocha, L.A.O.: A comprehensive review of homogeneous charge compression ignition (HCCI) engines: advantages, challenges and evolution. SAE Technical Paper 2020-36-0042 (2021) | es_ES |
dc.description.references | Pla, B., Piqueras, P., Bares, P., Aronis, A.: Simultaneous NOx and NH3 slip prediction in a SCR catalyst under real driving conditions including potential urea injection failures. Int. J. Engine Res. 23(7), 1213–1225 (2022) | es_ES |
dc.description.references | Bermúdez, V., Ruiz, S., Conde, B., Soto, L.: Analysis of the aftertreatment performance in HD-SI engine fueled with LPG. Int. J. Engine Res. (2020). https://doi.org/10.1177/14680874211048138 | es_ES |
dc.description.references | Piqueras, P., Burke, R., Sanchis, E.J., Diesel, B.: Fuel efficiency optimisation based on boosting control of the particulate filter active regeneration at high driving altitude. Fuel 319, 123734 (2022) | es_ES |
dc.description.references | Piqueras, P., Sanchis, E.J., Herreros, J.M., Tsolakis, A.: Evaluating the oxidation kinetic parameters of gasoline direct injection soot from thermogravimetric analysis experiments. Chem. Eng. Sci. 234, 116437 (2021) | es_ES |
dc.description.references | Matarrese, R.: Catalytic materials for gasoline particulate filters soot oxidation. Catalysts 11, 890 (2021) | es_ES |
dc.description.references | Farhan, S.M., Wang, P.: Post-injection strategies for performance improvement and emissions reduction in DI diesel engines—a review. Fuel Process. Technol. 228, 107145 (2022) | es_ES |
dc.description.references | Serrano, J.R., Piqueras, P., De la Morena, J., Sanchis, E.J.: Late fuel post-injection influence on the dynamics and efficiency of wall-flow particulate filters regeneration. Appl. Sci. 9, 5384 (2019) | es_ES |
dc.description.references | Cherkkil, A., Rathor, A.: Design and optimization of a muffler integrated with an adaptive quarter wave tube for noise reduction in commercial vehicles. SAE Technical Paper 2020-01-0507 (2020) | es_ES |
dc.description.references | Jiang, C., Wu, T.W., Xu, M.B., Cheng, C.Y.R.: BEM modeling of mufflers with diesel particulate filters and catalytic converters. Noise Control Eng. J. 58, 243–250 (2010) | es_ES |
dc.description.references | Glav, R., Boden, H., Abom, M.: An acoustic model for automobile catalytic converters. Proc. Int. Noise 88, 1261–1266 (1988) | es_ES |
dc.description.references | Hua, X., Herrin, D.W., Wu, T.W., Elnady, T.: Simulation of diesel particulate filters in large exhaust systems. Appl. Acoust. 74, 1326–1332 (2013) | es_ES |
dc.description.references | Torregrosa, A.J., Arnau, F.J., Piqueras, P., Sanchis, E.J., Tartoussi, H.: Phenomenological methodology for assessing the influence of flow conditions on the acoustic response of exhaust aftertreatment systems. J. Sound Vib. 396, 289–306 (2017) | es_ES |
dc.description.references | Montenegro, G., Onorati, A., Della Torre, A., Torregrosa, A.J.: The 3Dcell approach for the acoustic modeling of after-treatment devices. SAE Int. J. Engines 4, 2519–2530 (2011) | es_ES |
dc.description.references | Allam, S., Abom, M.: Acoustic modelling and testing of diesel particulate filters. J. Sound Vib. 288, 255–273 (2005) | es_ES |
dc.description.references | Astley, R.J., Cummings, A.: Wave propagation in catalytic converters: formulation of the problem and finite element to solution scheme. J. Sound Vib. 188, 635–657 (1995) | es_ES |
dc.description.references | Allam, S., Abom, M.: Sound propagation in an array of narrow porous channels with application to diesel particulate filters. J. Sound Vib. 291, 882–901 (2006) | es_ES |
dc.description.references | Wenzhi, G., Liming, F., Wenbo, N., Hui, W.: Theoretical and experimental investigations on diesel particulate filters. Noise Control Eng. J. 56, 282–287 (2008) | es_ES |
dc.description.references | Ferrara, G., Vichi, G., Lenzi, G., Biliotti, D.: Acoustic characterization of automotive mufflers—Part I: test rig design and evaluation of acoustic properties. SAE Technical Paper 2012-01-0800 (2012) | es_ES |
dc.description.references | Drant, J., Micheau, P., Berry, A.: Active noise control of higher modes in a duct using near field compensation and a ring of harmonic acoustic pneumatic sources. Appl. Acoust. 188, 108583 (2022) | es_ES |
dc.description.references | Abom, M.: Measurement of the scattering-matrix of acoustical 2-ports. Mech Syst. Signal Process. 5, 89–104 (1991) | es_ES |
dc.description.references | Chung, J.Y., Blaser, D.A.: Transfer function method of measuring in-duct acoustic properties. II. Experiment. J. Acoust. Soc. Am. 68, 914–921 (1980) | es_ES |
dc.description.references | Torregrosa, A.J., Broatch, A., García-Tíscar, J., Roig, F.: Experimental verification of hydrodynamic similarity in hot flows. Exp. Therm. Fluid Sci. 119, 110220 (2020) | es_ES |
dc.description.references | Payri, F., Desantes, J.M., Broatch, A.: Modified impulse method for the measurement of the frequency response of acoustic filters to weakly nonlinear transient excitations. J. Acoust. Soc. Am. 107, 731–738 (2000) | es_ES |
dc.description.references | Bannister, F.K., Muklow, G.F.: Wave action following sudden release of compressed gas from a cylinder. Proc. Inst. Mech. Eng. 159, 269–287 (1948) | es_ES |
dc.description.references | Torregrosa, A.J., Piqueras, P., Sanchis, E.J., Guilain, S., Dubarry, M.: Assessment of acoustic reciprocity and conservativeness in exhaust aftertreatment systems. J. Sound Vib. 436, 46–62 (2018) | es_ES |
dc.description.references | Piñero, G., Vergara, L., Desantes, J.M., Broatch, A.: Estimation of velocity fluctuation in internal combustion engine exhaust systems through beam forming techniques. Meas. Sci. Technol. 11, 1585–1595 (2000) | es_ES |
dc.description.references | Piumetti, M., van der Linden, B., Makkee, M., Miceli, P., Fino, D., Russo, N., Bensaid, S.: Contact dynamics for a solid–solid reaction mediated by gas-phase oxygen: study on the soot oxidation over ceria-based catalysts. Appl. Catal. B 199, 96–107 (2016) | es_ES |
dc.description.references | Payri, F., Desantes, J.M., Torregrosa, A.J.: Acoustic boundary condition for unsteady one-dimensional flow calculations. J. Sound Vib. 188, 85–110 (1995) | es_ES |
dc.description.references | Morel, T., Silvestri, J., Goerg, K., Jebasinski, R.: Modeling of engine exhaust acoustics. SAE Technical Paper 1999-01-1665 (1999) | es_ES |