- -

A novel deep learning based hippocampus subfield segmentation method

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A novel deep learning based hippocampus subfield segmentation method

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Manjón Herrera, José Vicente es_ES
dc.contributor.author Romero, José E. es_ES
dc.contributor.author Coupe, Pierrick es_ES
dc.date.accessioned 2023-06-23T18:02:08Z
dc.date.available 2023-06-23T18:02:08Z
dc.date.issued 2022-01-25 es_ES
dc.identifier.issn 2045-2322 es_ES
dc.identifier.uri http://hdl.handle.net/10251/194517
dc.description.abstract [EN] The automatic assessment of hippocampus volume is an important tool in the study of several neurodegenerative diseases such as Alzheimer's disease. Specifically, the measurement of hippocampus subfields properties is of great interest since it can show earlier pathological changes in the brain. However, segmentation of these subfields is very difficult due to their complex structure and for the need of high-resolution magnetic resonance images manually labeled. In this work, we present a novel pipeline for automatic hippocampus subfield segmentation based on a deeply supervised convolutional neural network. Results of the proposed method are shown for two available hippocampus subfield delineation protocols. The method has been compared to other state-of-the-art methods showing improved results in terms of accuracy and execution time. es_ES
dc.description.sponsorship This research was supported by the Spanish DPI2017-87743-R grant from the Ministerio de Economia, Industria y Competitividad of Spain. This study has been also carried out with financial support from the French State, managed by the French National Research Agency (ANR) in the frame of the Investments for the future Program IdEx Bordeaux (ANR-10-IDEX-03-02, HL-MRI Project) and Cluster of excellence CPU and TRAIL (HR-DTI ANR-10-LABX-57). The authors gratefully acknowledge the support of NVIDIA Corporation with their donation of the TITAN X GPU used in this research. es_ES
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Scientific Reports es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject MRI es_ES
dc.subject Hipocampus es_ES
dc.subject Segmentation es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title A novel deep learning based hippocampus subfield segmentation method es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/s41598-022-05287-8 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-87743-R/ES/DESARROLLO DE UNA PLATAFORMA ONLINE PARA EL ANALISIS ANATOMICO DEL CEREBRO TOLERANTE A LA PRESENCIA DE ALTERACIONES PATOLOGICAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ANR//ANR-10-IDEX-03-02/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ANR//ANR-10-LABX-57/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.description.bibliographicCitation Manjón Herrera, JV.; Romero, JE.; Coupe, P. (2022). A novel deep learning based hippocampus subfield segmentation method. Scientific Reports. 12(1):1-9. https://doi.org/10.1038/s41598-022-05287-8 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/s41598-022-05287-8 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 9 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 1 es_ES
dc.identifier.pmid 35079061 es_ES
dc.identifier.pmcid PMC8789929 es_ES
dc.relation.pasarela S\484085 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Agence Nationale de la Recherche, Francia es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Milner, B. Psychological defects produced by temporal lobe excision. Res. Publ. Assoc. Res. Nerv. Ment. Dis. 36, 244–257 (1958). es_ES
dc.description.references Braak, H. & Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 82(4), 239–259 (1991). es_ES
dc.description.references Jack, C. R. et al. Rates of hippocampal atrophy correlate with change in clinical status in aging and AD. Neurology 55, 484–489 (2000). es_ES
dc.description.references Jack, C. R. et al. Brain atrophy rates predict subsequent clinical conversion in normal elderly and amnestic MCI. Neurology 65, 1227–1231 (2005). es_ES
dc.description.references Dickerson, B. C. & Sperling, R. A. Neuroimaging biomarkers for clinical trials of disease-modifying therapies in Alzheimer’s disease. NeuroRx 2, 348–360 (2005). es_ES
dc.description.references Barnes, J. et al. A comparison of methods for the automated calculation of volumes and atrophy rates in the hippocampus. Neuroimage 40, 1655–1671 (2008). es_ES
dc.description.references Collins, D. L. & Pruessner, J. C. Towards accurate, automatic segmentation of the hippocampus and amygdala from MRI by augmenting ANIMAL with a template library and label fusion. Neuroimage 52(4), 1355–1366 (2010). es_ES
dc.description.references Coupé, P. et al. Patch-based segmentation using expert priors: Application to hippocampus and ventricle segmentation. Neuroimage 54(2), 940–954 (2011). es_ES
dc.description.references Chupin, M. et al. Fully automatic hippocampus segmentation and classification in Alzheimer’s disease and mild cognitive impairment applied on data from ADNI. Hippocampus 19(6), 579–587 (2009). es_ES
dc.description.references Hett, K., Ta, V., Catheline, G., Tourdias, T., Manjón, J. V., Coupe, P. Multimodal Hippocampal Subfield Grading For Alzheimer’s Disease Classification. (Scientific Reports, 2019). es_ES
dc.description.references Yushkevich, P. A. et al. Quantitative comparison of 21 protocols for labeling hippocampal subfields and parahippocampal subregions in in vivo MRI: Towards a harmonized segmentation protocol. Neuroimage 111, 526–541 (2015). es_ES
dc.description.references Winterburn, J. L. et al. A novel in vivo atlas of human hippocampal subfields using high-resolution 3 T magnetic resonance imaging. Neuroimage 74, 254–265 (2013). es_ES
dc.description.references Kulaga-Yoskovitz, J. et al. Multi-contrast submillimetric 3 Tesla hippocampal subfield segmentation protocol and dataset. Sci. Data. 2, 150059 (2015). es_ES
dc.description.references Van Leemput, K. et al. Automated segmentation of hippocampal subfields from ultra-high resolution in vivo MRI. Hippocampus 19(6), 549–557 (2009). es_ES
dc.description.references Pipitone, J. et al. Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates. Neuroimage 101, 494–512 (2014). es_ES
dc.description.references Iglesias, J. E. et al. A computational atlas of the hippocampal formation using ex vivo, ultra-high resolution MRI: Application to adaptive segmentation of in vivo MRI. Neuroimage 115(15), 117–137 (2015). es_ES
dc.description.references Yushkevich, P. A. et al. Automated volumetry and regional thickness analysis of hippocampal subfields and medial temporal cortical structures in mild cognitive impairment. Hum. Brain Mapp. 36(1), 258–287 (2015). es_ES
dc.description.references Romero, J. E., Coupé, P. & Manjón, J. V. HIPS: A new hippocampus subfield segmentation method. Neuroimage 163, 286–295 (2017). es_ES
dc.description.references Giraud, R. et al. An optimized PatchMatch for multi-scale and multi-feature label fusion. Neuroimage 124, 770–782 (2016). es_ES
dc.description.references Peixoto-Santos, J. E. et al. Manual hippocampal subfield segmentation using high-field MRI: Impact of different subfields in hippocampal volume loss of temporal lobe epilepsy patients. Front. Neurol. 9, 927 (2018). es_ES
dc.description.references Chen, Y., Shi, B., Wang, Z., Zhang, P., Smith, C. D., & Liu, J. Hippocampus segmentation through multi-view ensemble ConvNets. In 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017) 192–196 (Melbourne, VIC, 2017). es_ES
dc.description.references Cao, L. et al. Multi-task neural networks for joint hippocampus segmentation and clinical score regression. Multimed. Tools Appl. 77(22), 29669–29686 (2018). es_ES
dc.description.references Thyreau, B., Sato, K., Fukuda, H. & Taki, Y. Segmentation of the hippocampus by transferring algorithmic knowledge for large cohort processing. Med. Image Anal. 43, 214–228 (2018). es_ES
dc.description.references Ataloglou, D., Dimou, A., Zarpalas, D. & Daras, P. Fast and precise hippocampus segmentation through deep convolutional neural network ensembles and transfer learning. Neuroinformatics 17(4), 563–582 (2019). es_ES
dc.description.references Shi, Y., Cheng, K. & Liu, Z. Hippocampal subfields segmentation in brain MR images using generative adversarial networks. BioMed. Eng. OnLine 18, 5 (2019). es_ES
dc.description.references Ronneberger, O., Fischer, P. & Brox, T. U-Net: Convolutional networks for biomedical image segmentation. MICCAI 3(2015), 234–241 (2015). es_ES
dc.description.references Hancan, Z. et al. TITLE=dilated dense U-Net for infant hippocampus subfield segmentation. Front. Neuroinform. 13(30), 1–12 (2019). es_ES
dc.description.references Manjón, J. V. et al. Non-local MRI upsampling. Med. Image Anal. 14(6), 784–792 (2010). es_ES
dc.description.references Manjón, J. V., Coupé, P., Martí-Bonmatí, L., Collins, D. L. & Robles, M. Adaptive non-local means denoising of MR images with spatially varying noise levels. J. Magn. Reson. Imaging 31, 192–203 (2010). es_ES
dc.description.references Tustison, N. J. et al. N4ITK: Improved N3 bias correction. IEEE Trans. Med. Imaging 29(6), 1310–1320 (2010). es_ES
dc.description.references Avants, B. B., Tustison, N. & Song, G. Advanced normalization tools (ANTS). Insight J. 2, 1–35 (2009). es_ES
dc.description.references Dou, Q. et al. 3D deeply supervised network for automated segmentation of volumetric medical images. Med. Image Anal. 41, 40–54 (2017). es_ES
dc.description.references Milletari, F., Navab, N., & Ahmadi, S. A. V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation. Arxiv (2016). es_ES
dc.description.references Sudre, C. H., Li, W., Vercauteren, T., Ourselin, S. & Jorge, C. M. Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations. In Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. DLMIA 2017, ML-CDS 2017. Lecture Notes in Computer Science Vol. 10553 (eds Cardoso, M. et al.) (Springer, 2017). es_ES
dc.description.references Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D. mixup: Beyond Empirical Risk Minimization. https;//arXiv.org/abs/1710.09412 (2017) es_ES
dc.description.references Zijdenbos, A. P., Dawant, B. M., Margolin, R. A. & Palme, A. C. Morphometric analysis of white matter lesions in MR images: Method and validation. IEE Trans. Med. Imaging 13, 716–724 (1994). es_ES
dc.description.references Diederik, P. K. & Jimmy, L. B. Adam: A method for stochastic optimization. https;//arXiv.org/abs/1412.6980v9 (2014). es_ES
dc.description.references Eaton-Rosen, Z., Bragman, F., Ourselin, S. & Cardoso, M. J. Improving data augmentation for medical image segmentation. In International Conference on Medical Imaging with Deep Learning, MIDL2018 (2018). es_ES
dc.description.references Chen, Y., Xie, Y., Zhou, Z., Shi, G., Christodoulou, A. G. & Li, D. Brain MRI super resolution using 3D deep densely connected neural networks. In IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), Washington, 739–742 (2018). es_ES
upv.costeAPC 2166 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem