- -

Comparison of artificial intelligence control strategies for a peristaltically pumped low-pressure driven membrane process

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Comparison of artificial intelligence control strategies for a peristaltically pumped low-pressure driven membrane process

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Díez, José-Luis es_ES
dc.contributor.author Masip-Moret, Vicente es_ES
dc.contributor.author Santafé Moros, María Asunción es_ES
dc.contributor.author Gozálvez-Zafrilla, José M. es_ES
dc.date.accessioned 2023-06-26T18:01:22Z
dc.date.available 2023-06-26T18:01:22Z
dc.date.issued 2022-09 es_ES
dc.identifier.uri http://hdl.handle.net/10251/194556
dc.description.abstract [EN] Peristaltic pumping is used in membrane applications where high and sterile sealing is required. However, control is difficult due to the pulsating pump characteristics and the time-var ying properties of the system. In this work, three artificial intelligence control strategies (artificial neural networks (ANN), fuzzy logic expert systems, and fuzzy-integrated local models) were used to regulate transmembrane pressure and crossflow velocity in a microfiltration system under high fouling conditions. A pilot plant was used to obtain the necessary data to identify the AI models and to test the controllers. Humic acid was employed as a foulant, and cleaning-in-place with NaOH was used to restore the membrane state. Several starting operating points were studied and setpoint changes were performed to study the plant dynamics under different control strategies. The results showed that the control approaches were able to control the membrane system, but significant dif ferences in the dynamics were observed. The ANN control was able to achieve the specifications but showed poor dynamics. Expert control was fast but showed problems in different working ar eas. Local models required less data than ANN, achieving high accuracy and robustness. Therefore, the technique to be used will depend on the available information and the application dynamics requirements. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Membranes es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Low-pressure driven process es_ES
dc.subject Peristaltic pump es_ES
dc.subject Microfiltration es_ES
dc.subject Intelligent control es_ES
dc.subject Artificial intelligence es_ES
dc.subject Modelling es_ES
dc.subject Fouling es_ES
dc.subject Humic acid es_ES
dc.subject.classification INGENIERIA QUIMICA es_ES
dc.subject.classification INGENIERIA DE SISTEMAS Y AUTOMATICA es_ES
dc.title Comparison of artificial intelligence control strategies for a peristaltically pumped low-pressure driven membrane process es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/membranes12090883 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.description.bibliographicCitation Díez, J.; Masip-Moret, V.; Santafé Moros, MA.; Gozálvez-Zafrilla, JM. (2022). Comparison of artificial intelligence control strategies for a peristaltically pumped low-pressure driven membrane process. Membranes. 12(9):1-19. https://doi.org/10.3390/membranes12090883 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/membranes12090883 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 19 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 9 es_ES
dc.identifier.eissn 2077-0375 es_ES
dc.identifier.pmid 36135902 es_ES
dc.identifier.pmcid PMC9504800 es_ES
dc.relation.pasarela S\471412 es_ES
dc.subject.ods 06.- Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem