Mostrar el registro sencillo del ítem
dc.contributor.author | Fernández Vidal, Tomás | es_ES |
dc.contributor.author | Galicer, Daniel | es_ES |
dc.contributor.author | Sevilla Peris, Pablo | es_ES |
dc.date.accessioned | 2023-07-03T18:01:26Z | |
dc.date.available | 2023-07-03T18:01:26Z | |
dc.date.issued | 2022-10 | es_ES |
dc.identifier.issn | 1660-5446 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/194641 | |
dc.description.abstract | [EN] We give a version of the Montel theorem for Hardy spaces of holomorphic functions on an infinite dimensional space. Precisely, we show that any bounded sequence of holomorphic functions in some Hardy space, has a subsequence that converges uniformly over compact subsets to a function that also belongs to the same Hardy space. As a by-product of our results for spaces of functions on infinitely many variables, we also provide an elementary proof of a Montel-type theorem for the Hardy space of Dirichlet series. | es_ES |
dc.description.sponsorship | Supported by PICT 2015-2299 and PICT 2018-0425. Daniel Galicer: Supported by CONICET-PIP 2014-2016 and PICT 2018-0425. Pablo Sevilla-Peris: Supported by MINECO and FEDER Project MTM2017-83262C2-1-P, GV Project AICO/2021/170 and MECD Grant PRX17/00040. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Mediterranean Journal of Mathematics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Montel theorem | es_ES |
dc.subject | Hardy spaces | es_ES |
dc.subject | Infinite dimensional analysis | es_ES |
dc.subject | Spaces of Dirichlet series | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | A Montel-Type Theorem for Hardy Spaces of Holomorphic Functions | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s00009-022-02110-6 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-83262-C2-1-P/ES/ANALISIS COMPLEJO Y GEOMETRIA EN ESPACIOS DE BANACH/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//AICO%2F2021%2F170//OPERADORES EN ESPACIOS DE FUNCIONES ANALITICAS O DIFERENCIABLES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ANPCyT//PICT 2015-2299/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ANPCyT//PICT 2018-04250/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MECD//PRX17%2F00040/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural | es_ES |
dc.description.bibliographicCitation | Fernández Vidal, T.; Galicer, D.; Sevilla Peris, P. (2022). A Montel-Type Theorem for Hardy Spaces of Holomorphic Functions. Mediterranean Journal of Mathematics. 19(5):1-13. https://doi.org/10.1007/s00009-022-02110-6 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s00009-022-02110-6 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 13 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 19 | es_ES |
dc.description.issue | 5 | es_ES |
dc.relation.pasarela | S\489477 | es_ES |
dc.contributor.funder | GENERALITAT VALENCIANA | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Educación, Cultura y Deporte | es_ES |
dc.contributor.funder | Ministerio de Economía, Industria y Competitividad | es_ES |
dc.contributor.funder | Agencia Nacional de Promoción Científica y Tecnológica, Argentina | es_ES |
dc.description.references | Aleman, A., Olsen, J.-F., Saksman, E.: Fourier multipliers for Hardy spaces of Dirichlet series. Int. Math. Res. Not. IMRN 16, 4368–4378 (2014). https://doi.org/10.1093/imrn/rnt080 | es_ES |
dc.description.references | Bayart, F.: Hardy spaces of Dirichlet series and their composition operators. Monatsh. Math. 136(3), 203–236 (2002). https://doi.org/10.1007/s00605-002-0470-7 | es_ES |
dc.description.references | Bayart, F.: Personal comunication (2019) | es_ES |
dc.description.references | Bayart, F., Defant, A., Frerick, L., Maestre, M., Sevilla-Peris, P.M.: Multipliers of Dirichlet series and monomial series expansions of holomorphic functions in infinitely many variables. Math. Ann. 138(1–2), 837–876 (2017). https://doi.org/10.1007/s00208-016-1511-1 | es_ES |
dc.description.references | Conway, J.B.: Functions of One Complex Variable., Volume 11 of Graduate Texts in Mathematics, 2nd edn. Springer, New York (1978) | es_ES |
dc.description.references | Conway, J.B.: Functions of One Complex Variable. II, Volume 159 of Graduate Texts in Mathematics. Springer, New York (1995). https://doi.org/10.1007/978-1-4612-0817-4 | es_ES |
dc.description.references | Defant, A., Fernández Vidal, T., Schoolmann, I., Sevilla-Peris, P.: Fréchet spaces of general Dirichlet series. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 115(3), Paper No. 138, 34 (2021). https://doi.org/10.1007/s13398-021-01074-8 | es_ES |
dc.description.references | Defant, A., Domingo, G., Manuel, M., Pablo, S.-P.: Dirichlet Series and Holomorphic Functions in High Dimensions., Volume 37 of New Mathematical Monographs. Cambridge University Press, Cambridge (2019). https://doi.org/10.1017/9781108691611 | es_ES |
dc.description.references | Defant, A., Maestre, M., Prengel, C.: Domains of convergence for monomial expansions of holomorphic functions in infinitely many variables. J. Reine Angew. Math. 634, 13–49 (2009). https://doi.org/10.1515/CRELLE.2009.068 | es_ES |
dc.description.references | Defant, A., Schoolmann, I.: Variants of a theorem of Helson on general Dirichlet series. J. Funct. Anal. 279(5), 108569 (2020). https://doi.org/10.1016/j.jfa.2020.108569 | es_ES |
dc.description.references | Queffélec, H., Queffélec, M.: Diophantine Approximation and Dirichlet Series, Volume 2 of Harish-Chandra Research Institute Lecture Notes. Hindustan Book Agency, New Delhi (2013) | es_ES |
dc.description.references | Rudin, W.: Fourier Analysis on Groups, Interscience Tracts in Pure and Applied Mathematics. Interscience Publishers (a division of John Wiley and Sons), New York (1962) | es_ES |