- -

High-performance reconstruction of CT medical images by using out-of-core methods in GPU

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

High-performance reconstruction of CT medical images by using out-of-core methods in GPU

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Quintana-Ortí, Gregorio es_ES
dc.contributor.author CHILLARÓN-PÉREZ, MÓNICA es_ES
dc.contributor.author Vidal-Gimeno, Vicente-Emilio es_ES
dc.contributor.author Verdú Martín, Gumersindo Jesús es_ES
dc.date.accessioned 2023-07-04T18:01:45Z
dc.date.available 2023-07-04T18:01:45Z
dc.date.issued 2022-05 es_ES
dc.identifier.issn 0169-2607 es_ES
dc.identifier.uri http://hdl.handle.net/10251/194678
dc.description.abstract [EN] Background and objective: Since Computed Tomography (CT) is one of the most widely used medical imaging tests, it is essential to work on methods that reduce the radiation the patient is exposed to. Although there are several possible approaches to achieve this, we focus on reducing the exposure time through sparse sampling. With this approach, efficient algebraic methods are needed to be able to generate the images in real time, and since their computational cost is high, using high-performance computing is essential. Methods: In this paper we present a GPU (Graphics Processing Unit) software for solving the CT image reconstruction problem using the QR factorization performed with out-of-core (OOC) techniques. This implementation is optimized to reduce the data transfer times between disk, CPU, and GPU, as well as to overlap input/output operations and computations. Results: The experimental study shows that a block cache stored on main page-locked memory is more efficient than using a cache on GPU memory or mirroring it in both GPU and CPU memory. Compared to a CPU version, this implementation is up to 6.5 times faster, providing an improved image quality when compared to other reconstruction methods. Conclusions: The software developed is an optimized version of the QR factorization for GPU that allows the algebraic reconstruction of CT images with high quality and resolution, with a performance that can be compared with state-of-the-art methods used in clinical practice. This approach allows reducing the exposure time of the patient and thus the radiation dose. es_ES
dc.description.sponsorship This research has been supported by the "Universitat Politecnica de Valencia", "Generalitat Valenciana" under PROMETEO/2018/035 and ACIF/2017/075, co-financed by FEDER and FSE funds, and the "Spanish Ministry of Science, Innovation and Universities" under Grant RTI2018-098156-B-C54 co-financed by FEDER funds. The authors would also like to thank Francisco D. Igual (Universidad Complutense de Madrid) for granting access to the volta1 server. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Computer Methods and Programs in Biomedicine es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject CT es_ES
dc.subject QR factorization es_ES
dc.subject Medical image es_ES
dc.subject Reconstruction es_ES
dc.subject Out-of-core es_ES
dc.subject HPC es_ES
dc.subject GPU es_ES
dc.subject.classification CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL es_ES
dc.subject.classification INGENIERIA NUCLEAR es_ES
dc.title High-performance reconstruction of CT medical images by using out-of-core methods in GPU es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.cmpb.2022.106725 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-098156-B-C54/ES/TECNICAS PARA LA ACELERACION Y MEJORA DE APLICACIONES MULTIMEDIA Y HPC/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//PROMETEO%2F2018%2F035//BIOINGENIERIA DE LAS RADIACIONES IONIZANTES. BIORA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACIF%2F2017%2F075//AYUDA PREDOCTORAL CONSELLERIA-CHILLARON PEREZ/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.description.bibliographicCitation Quintana-Ortí, G.; Chillarón-Pérez, M.; Vidal-Gimeno, V.; Verdú Martín, GJ. (2022). High-performance reconstruction of CT medical images by using out-of-core methods in GPU. Computer Methods and Programs in Biomedicine. 218:1-11. https://doi.org/10.1016/j.cmpb.2022.106725 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.cmpb.2022.106725 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 218 es_ES
dc.identifier.pmid 35290900 es_ES
dc.relation.pasarela S\464702 es_ES
dc.contributor.funder European Social Fund es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Ciencia, Innovación y Universidades es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.subject.ods 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades es_ES
dc.subject.ods 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem