Mostrar el registro sencillo del ítem
dc.contributor.author | Quintana-Ortí, Gregorio | es_ES |
dc.contributor.author | CHILLARÓN-PÉREZ, MÓNICA | es_ES |
dc.contributor.author | Vidal-Gimeno, Vicente-Emilio | es_ES |
dc.contributor.author | Verdú Martín, Gumersindo Jesús | es_ES |
dc.date.accessioned | 2023-07-04T18:01:45Z | |
dc.date.available | 2023-07-04T18:01:45Z | |
dc.date.issued | 2022-05 | es_ES |
dc.identifier.issn | 0169-2607 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/194678 | |
dc.description.abstract | [EN] Background and objective: Since Computed Tomography (CT) is one of the most widely used medical imaging tests, it is essential to work on methods that reduce the radiation the patient is exposed to. Although there are several possible approaches to achieve this, we focus on reducing the exposure time through sparse sampling. With this approach, efficient algebraic methods are needed to be able to generate the images in real time, and since their computational cost is high, using high-performance computing is essential. Methods: In this paper we present a GPU (Graphics Processing Unit) software for solving the CT image reconstruction problem using the QR factorization performed with out-of-core (OOC) techniques. This implementation is optimized to reduce the data transfer times between disk, CPU, and GPU, as well as to overlap input/output operations and computations. Results: The experimental study shows that a block cache stored on main page-locked memory is more efficient than using a cache on GPU memory or mirroring it in both GPU and CPU memory. Compared to a CPU version, this implementation is up to 6.5 times faster, providing an improved image quality when compared to other reconstruction methods. Conclusions: The software developed is an optimized version of the QR factorization for GPU that allows the algebraic reconstruction of CT images with high quality and resolution, with a performance that can be compared with state-of-the-art methods used in clinical practice. This approach allows reducing the exposure time of the patient and thus the radiation dose. | es_ES |
dc.description.sponsorship | This research has been supported by the "Universitat Politecnica de Valencia", "Generalitat Valenciana" under PROMETEO/2018/035 and ACIF/2017/075, co-financed by FEDER and FSE funds, and the "Spanish Ministry of Science, Innovation and Universities" under Grant RTI2018-098156-B-C54 co-financed by FEDER funds. The authors would also like to thank Francisco D. Igual (Universidad Complutense de Madrid) for granting access to the volta1 server. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Computer Methods and Programs in Biomedicine | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | CT | es_ES |
dc.subject | QR factorization | es_ES |
dc.subject | Medical image | es_ES |
dc.subject | Reconstruction | es_ES |
dc.subject | Out-of-core | es_ES |
dc.subject | HPC | es_ES |
dc.subject | GPU | es_ES |
dc.subject.classification | CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL | es_ES |
dc.subject.classification | INGENIERIA NUCLEAR | es_ES |
dc.title | High-performance reconstruction of CT medical images by using out-of-core methods in GPU | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.cmpb.2022.106725 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-098156-B-C54/ES/TECNICAS PARA LA ACELERACION Y MEJORA DE APLICACIONES MULTIMEDIA Y HPC/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//PROMETEO%2F2018%2F035//BIOINGENIERIA DE LAS RADIACIONES IONIZANTES. BIORA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//ACIF%2F2017%2F075//AYUDA PREDOCTORAL CONSELLERIA-CHILLARON PEREZ/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica | es_ES |
dc.description.bibliographicCitation | Quintana-Ortí, G.; Chillarón-Pérez, M.; Vidal-Gimeno, V.; Verdú Martín, GJ. (2022). High-performance reconstruction of CT medical images by using out-of-core methods in GPU. Computer Methods and Programs in Biomedicine. 218:1-11. https://doi.org/10.1016/j.cmpb.2022.106725 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.cmpb.2022.106725 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 11 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 218 | es_ES |
dc.identifier.pmid | 35290900 | es_ES |
dc.relation.pasarela | S\464702 | es_ES |
dc.contributor.funder | European Social Fund | es_ES |
dc.contributor.funder | GENERALITAT VALENCIANA | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Ciencia, Innovación y Universidades | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.subject.ods | 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades | es_ES |
dc.subject.ods | 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación | es_ES |