- -

Longitudinal detection of new MS lesions using deep learning

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso
Longitudinal detection of new MS lesions using deep learning

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Kamraoui, Reda Abdellah es_ES
dc.contributor.author Mansecal, Boris es_ES
dc.contributor.author Manjón Herrera, José Vicente es_ES
dc.contributor.author Coupé, Pierrick es_ES
dc.date.accessioned 2023-07-05T18:01:11Z
dc.date.available 2023-07-05T18:01:11Z
dc.date.issued 2022-08-25 es_ES
dc.identifier.uri http://hdl.handle.net/10251/194699
dc.description.abstract [EN] The detection of new multiple sclerosis (MS) lesions is an important marker of the evolution of the disease. The applicability of learning-based methods could automate this task e ciently. However, the lack of annotated longitudinal data with new-appearing lesions is a limiting factor for the training of robust and generalizing models. In this study, we describe a deep-learning-based pipeline addressing the challenging task of detecting and segmenting new MS lesions. First, we propose to use transfer-learning from a model trained on a segmentation task using single time-points. Therefore, we exploit knowledge from an easier task and for which more annotated datasets are available. Second, we propose a data synthesis strategy to generate realistic longitudinal time-points with new lesions using single time-point scans. In this way, we pretrain our detection model on large synthetic annotated datasets. Finally, we use a data-augmentation technique designed to simulate data diversity in MRI. By doing that, we increase the size of the available small annotated longitudinal datasets. Our ablation study showed that each contribution lead to an enhancement of the segmentation accuracy. Using the proposed pipeline, we obtained the best score for the segmentation and the detection of new MS lesions in the MSSEG2 MICCAI challenge. es_ES
dc.description.sponsorship This study benefited from the support of the project DeepvolBrain of the French National Research Agency (ANR18-CE45-0013). This study was achieved within the context of the Laboratory of Excellence TRAIL ANR-10-LABX-57 for the BigDataBrain project. Moreover, we thank the Investments for the future Program IdEx Bordeaux (ANR-10-IDEX-03-02 and RRI IMPACT), the French Ministry of Education and Research, and the CNRS for the DeepMultiBrain project. This study has also been supported by the PID2020-118608RB-I00 grants from the Spanish Ministerio de Economia, Industria Competitividad. es_ES
dc.language Inglés es_ES
dc.publisher Frontiers Media S.A. es_ES
dc.relation.ispartof Frontiers in Neuroimaging es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject New lesion detection es_ES
dc.subject New lesions segmentation es_ES
dc.subject Data augmentation es_ES
dc.subject Transfer learning es_ES
dc.subject Data synthesis es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Longitudinal detection of new MS lesions using deep learning es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3389/fnimg.2022.948235 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-118608RB-I00/ES/DESARROLLO DE UNA PLATAFORMA ONLINE PARA EL ANALISIS ANATOMICO Y HOLISTICO DEL CEREBRO BASADO IN DEEP LEARNING / es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ANR//ANR-18-CE45-0013/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ANR//ANR-10-LABX-57/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ANR//ANR-10-IDEX-03-02/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.description.bibliographicCitation Kamraoui, RA.; Mansecal, B.; Manjón Herrera, JV.; Coupé, P. (2022). Longitudinal detection of new MS lesions using deep learning. Frontiers in Neuroimaging. 1:1-14. https://doi.org/10.3389/fnimg.2022.948235 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3389/fnimg.2022.948235 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 14 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 1 es_ES
dc.identifier.eissn 2813-1193 es_ES
dc.relation.pasarela S\484092 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Agence Nationale de la Recherche, Francia es_ES
dc.contributor.funder Centre National de la Recherche Scientifique, Francia es_ES
dc.contributor.funder Ministère de l'Enseignement Supérieur et de la Recherche, Francia es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem