- -

Efficient and portable GEMM-based convolution operators for deep neural network training on multicore processors

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Efficient and portable GEMM-based convolution operators for deep neural network training on multicore processors

Mostrar el registro completo del ítem

Barrachina, S.; Dolz, MF.; San Juan, P.; Quintana-Ortí, ES. (2022). Efficient and portable GEMM-based convolution operators for deep neural network training on multicore processors. Journal of Parallel and Distributed Computing. 167:240-254. https://doi.org/10.1016/j.jpdc.2022.05.009

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/194790

Ficheros en el ítem

Metadatos del ítem

Título: Efficient and portable GEMM-based convolution operators for deep neural network training on multicore processors
Autor: Barrachina, Sergio Dolz, Manuel F. San Juan, Pablo Quintana-Ortí, Enrique S.
Entidad UPV: Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica
Fecha difusión:
Resumen:
[EN] Convolutional Neural Networks (CNNs) play a crucial role in many image recognition and classification tasks, recommender systems, brain-computer interfaces, etc. As a consequence, there is a notable interest in ...[+]
Palabras clave: Convolutional neural networks , Distributed training , High performance , Python , Clusters of multicore processors
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Journal of Parallel and Distributed Computing. (issn: 0743-7315 )
DOI: 10.1016/j.jpdc.2022.05.009
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.jpdc.2022.05.009
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-113656RB-C21/ES/COMPUTACION Y COMUNICACIONES DE ALTAS PRESTACIONES CONSCIENTE DEL CONSUMO ENERGETICO. APLICACIONES AL APRENDIZAJE PROFUNDO COMPUTACIONAL - UJI/
info:eu-repo/grantAgreement/GVA//CDEIGENT%2F2018%2F014//Plan GenT/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-113656RB-C22/ES/COMPUTACION Y COMUNICACIONES DE ALTAS PRESTACIONES CONSCIENTES DEL CONSUMO ENERGETICO. APLICACIONES AL APRENDIZAJE PROFUNDO COMPUTACIONAL - UPV/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2019%2F109//COMUNICACION Y COMPUTACION INTELIGENTES Y SOCIALES/
Agradecimientos:
This research was funded by Project PID2020-113656RB-C21/C22 supported by MCIN/AEI/10.13039/501100011033 and Prometeo/2019/109 of the Generalitat Valenciana . Manuel F. Dolz was also supported by the Plan Gen-T grant ...[+]
Tipo: Artículo

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem