Mostrar el registro sencillo del ítem
dc.contributor.author | Yeo, Joel | es_ES |
dc.contributor.author | Jin, Huifei | es_ES |
dc.contributor.author | Rodrigo Mor, Armando | es_ES |
dc.contributor.author | Chau, Yuen | es_ES |
dc.contributor.author | Pattanadech, Norasage | es_ES |
dc.contributor.author | Tushar, Wayes | es_ES |
dc.contributor.author | Saha, Tapan K. | es_ES |
dc.contributor.author | Ng, Chee Seng | es_ES |
dc.date.accessioned | 2023-07-10T18:03:09Z | |
dc.date.available | 2023-07-10T18:03:09Z | |
dc.date.issued | 2023-02 | es_ES |
dc.identifier.issn | 0885-8977 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/194797 | |
dc.description.abstract | [EN] This paper proposes an algorithmic approach constructed from a convolutional recurrent neural network (CRNN) iterated with examination of extracted features for partial discharge (PD) localisation; tests were conducted offline on medium voltage (MV) power cables. To evaluate the performance of the algorithm, a case study was performed on 7 cables deliberately selected to comprehensively illustrate the difficulties encountered in field testing. The experimental test results prove that the proposed concept is able to identify and localise discharges besmirched with significant quantities of noise. Main contribution of the methodology is the successful automated interpretation of measurements acquired under noisy challenging field constraints. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Institute of Electrical and Electronics Engineers | es_ES |
dc.relation.ispartof | IEEE Transactions on Power Delivery | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Partial discharge | es_ES |
dc.subject | Neural networks | es_ES |
dc.subject | Medium voltage cables | es_ES |
dc.subject.classification | INGENIERIA ELECTRICA | es_ES |
dc.title | Localisation of Partial Discharge in Power Cables Through Multi-Output Convolutional Recurrent Neural Network and Feature Extraction | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1109/TPWRD.2022.3183588 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials | es_ES |
dc.description.bibliographicCitation | Yeo, J.; Jin, H.; Rodrigo Mor, A.; Chau, Y.; Pattanadech, N.; Tushar, W.; Saha, TK.... (2023). Localisation of Partial Discharge in Power Cables Through Multi-Output Convolutional Recurrent Neural Network and Feature Extraction. IEEE Transactions on Power Delivery. 38(1):177-188. https://doi.org/10.1109/TPWRD.2022.3183588 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1109/TPWRD.2022.3183588 | es_ES |
dc.description.upvformatpinicio | 177 | es_ES |
dc.description.upvformatpfin | 188 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 38 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.pasarela | S\467430 | es_ES |