- -

Localisation of Partial Discharge in Power Cables Through Multi-Output Convolutional Recurrent Neural Network and Feature Extraction

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Localisation of Partial Discharge in Power Cables Through Multi-Output Convolutional Recurrent Neural Network and Feature Extraction

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Yeo, Joel es_ES
dc.contributor.author Jin, Huifei es_ES
dc.contributor.author Rodrigo Mor, Armando es_ES
dc.contributor.author Chau, Yuen es_ES
dc.contributor.author Pattanadech, Norasage es_ES
dc.contributor.author Tushar, Wayes es_ES
dc.contributor.author Saha, Tapan K. es_ES
dc.contributor.author Ng, Chee Seng es_ES
dc.date.accessioned 2023-07-10T18:03:09Z
dc.date.available 2023-07-10T18:03:09Z
dc.date.issued 2023-02 es_ES
dc.identifier.issn 0885-8977 es_ES
dc.identifier.uri http://hdl.handle.net/10251/194797
dc.description.abstract [EN] This paper proposes an algorithmic approach constructed from a convolutional recurrent neural network (CRNN) iterated with examination of extracted features for partial discharge (PD) localisation; tests were conducted offline on medium voltage (MV) power cables. To evaluate the performance of the algorithm, a case study was performed on 7 cables deliberately selected to comprehensively illustrate the difficulties encountered in field testing. The experimental test results prove that the proposed concept is able to identify and localise discharges besmirched with significant quantities of noise. Main contribution of the methodology is the successful automated interpretation of measurements acquired under noisy challenging field constraints. es_ES
dc.language Inglés es_ES
dc.publisher Institute of Electrical and Electronics Engineers es_ES
dc.relation.ispartof IEEE Transactions on Power Delivery es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Partial discharge es_ES
dc.subject Neural networks es_ES
dc.subject Medium voltage cables es_ES
dc.subject.classification INGENIERIA ELECTRICA es_ES
dc.title Localisation of Partial Discharge in Power Cables Through Multi-Output Convolutional Recurrent Neural Network and Feature Extraction es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1109/TPWRD.2022.3183588 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.description.bibliographicCitation Yeo, J.; Jin, H.; Rodrigo Mor, A.; Chau, Y.; Pattanadech, N.; Tushar, W.; Saha, TK.... (2023). Localisation of Partial Discharge in Power Cables Through Multi-Output Convolutional Recurrent Neural Network and Feature Extraction. IEEE Transactions on Power Delivery. 38(1):177-188. https://doi.org/10.1109/TPWRD.2022.3183588 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1109/TPWRD.2022.3183588 es_ES
dc.description.upvformatpinicio 177 es_ES
dc.description.upvformatpfin 188 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 38 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\467430 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem