- -

New decision rules under strict uncertainty and a general distance-based approach

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

New decision rules under strict uncertainty and a general distance-based approach

Show simple item record

Files in this item

dc.contributor.author Salas-Molina, Francisco es_ES
dc.contributor.author Pla Santamaría, David es_ES
dc.contributor.author Vercher Ferrandiz, Mª Luisa es_ES
dc.contributor.author Garcia-Bernabeu, Ana es_ES
dc.date.accessioned 2023-07-12T09:22:23Z
dc.date.available 2023-07-12T09:22:23Z
dc.date.issued 2023-04-04 es_ES
dc.identifier.uri http://hdl.handle.net/10251/194845
dc.description.abstract [EN] Strict uncertainty implies a complete lack of knowledge about the probabilities of possible future states of the world. However, there is complete information about the set of alternatives under consideration, the set of future states, and the scalar evaluation of choosing every alternative if a given state occurs. The principle of insufficient reason by Laplace, the maximin rule by Wald, the Hurwicz criterion, or the minimax regret criterion by Savage are examples of decision rules under strict uncertainty. Within the context of strict uncertainty, moderate pessimism implies the existence of a decision-maker who cautiously assumes that the most favorable state will not occur when the action has been taken with no conjecture being made about the other states. The criterion of moderate pessimism proposed by Ballestero implies the use of the inverse of the range of evaluation for each state as a weight system. In this paper, we extend the notion of moderate pessimism under strict uncertainty to solve some of its limitations. First, we propose a new domination analysis that avoids removing dominated alternatives that are still relevant in the final ranking of alternatives. Second, we propose additional score functions using the inverse of the standard deviation and the mean absolute deviation instead of the range of evaluations for each future state to reduce the impact of the possible existence of outliers in the decision table. This partial result is later generalized through the concept of average deviation of a given order. Finally, we show that all the mentioned decision rules are special cases of a general ranking method based on the Minkowski distance function. We illustrate the use of distance-based decision rules through an application in the context of portfolio selection. es_ES
dc.language Inglés es_ES
dc.publisher American Institute of Mathematical Sciences es_ES
dc.relation.ispartof AIMS Mathematics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Moderate pessimism es_ES
dc.subject Measures of dispersion es_ES
dc.subject Outliers es_ES
dc.subject Minkowski distance function es_ES
dc.subject Finance es_ES
dc.subject.classification ECONOMIA FINANCIERA Y CONTABILIDAD es_ES
dc.subject.classification ECONOMIA APLICADA es_ES
dc.title New decision rules under strict uncertainty and a general distance-based approach es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3934/math.2023670 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Politécnica Superior de Alcoy - Escola Politècnica Superior d'Alcoi es_ES
dc.description.bibliographicCitation Salas-Molina, F.; Pla Santamaría, D.; Vercher Ferrandiz, ML.; Garcia-Bernabeu, A. (2023). New decision rules under strict uncertainty and a general distance-based approach. AIMS Mathematics. 8(6):13257-13275. https://doi.org/10.3934/math.2023670 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3934/math.2023670 es_ES
dc.description.upvformatpinicio 13257 es_ES
dc.description.upvformatpfin 13275 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 6 es_ES
dc.identifier.eissn 2473-6988 es_ES
dc.relation.pasarela S\486888 es_ES
dc.contributor.funder Universitat Politècnica de València
dc.description.references E. Ballestero, Strict uncertainty: A criterion for moderately pessimistic decision makers, <i>Decision Sci.</i>, <b>33</b> (2002), 87–108. https://doi.org/10.1111/j.1540-5915.2002.tb01637.x es_ES
dc.description.references P. S. Laplace, <i>A philosophical essay on probabilities</i>, New York: Dover, 1952. es_ES
dc.description.references A. Wald, <i>Statistical decision functions</i>, New York: John Wiley, 1950. es_ES
dc.description.references L. Hurwicz, Optimality criteria for decision making under ignorance, <i>Cowles Commission Discussion Paper, Statistics</i>, <b>370</b> (1951). es_ES
dc.description.references L. J. Savage, The theory of statistical decision, <i>J. Am. Stat. Assoc.</i>, <b>46</b> (1951), 55–67. es_ES
dc.description.references E. Ballestero, Selecting textile products by manufacturing companies under uncertainty, <i>Asia Pac. J. Oper. Res.</i>, <b>21</b> (2004), 141–161. https://doi.org/10.1142/s0217595904000102 es_ES
dc.description.references E. Ballestero, M. Günther, D. Pla-Santamaria, C. Stummer, Portfolio selection under strict uncertainty: A multi-criteria methodology and its application to the Frankfurt and Vienna Stock Exchanges, <i>Eur. J. Oper. Res.</i>, <b>181</b> (2007), 1476–1487. https://doi.org/10.1016/j.ejor.2005.11.050 es_ES
dc.description.references M. Bravo, D. Pla-Santamaria, Evaluating loan performance for bank offices: a multicriteria decision-making approach, <i>Inform. Syst. Oper. Res.</i>, <b>50</b> (2012), 127–133. https://doi.org/10.3138/infor.50.3.127 es_ES
dc.description.references D. Pla-Santamaria, M. Bravo, J. Reig-Mullor, F. Salas-Molina, A multicriteria approach to manage credit risk under strict uncertainty, <i>Top</i>, <b>29</b> (2021), 494–523. https://doi.org/10.1007/s11750-020-00571-0 es_ES
dc.description.references C. P. Chambers, Ordinal aggregation and quantiles, <i>J. Econ. Theory</i>, <b>137</b> (2007), 416–431. https://doi.org/10.1016/j.jet.2006.12.002 es_ES
dc.description.references M. Rostek, Quantile maximization in decision theory, <i>Rev. Econ. Stud</i>, <b>77</b> (2010), 339–371. https://doi.org/10.1111/j.1467-937x.2009.00564.x es_ES
dc.description.references H. Sadeghi, F. Moslemi, A multiple objective programming approach to linear bilevel multi-follower programming, <i>AIMS Math.</i>, <b>4</b> (2019), 763–778. https://doi.org/10.3934/math.2019.3.763 es_ES
dc.description.references M. Zeleny, Compromise programming, <i>Multiple criteria decision making</i>, University of South Carolina Press, Columbia, (1973), 262–301. es_ES
dc.description.references R. E. Steuer, <i>Multiple criteria optimization. Theory, Computation, and Application</i>, New York: John Wiley, 1986. es_ES
dc.description.references E. Ballestero, C. Romero, <i>Multiple criteria decision making and its applications to economic problems</i>, Dordrecht: Kluwer Academic Publishers, 1998. es_ES
dc.description.references S. French, <i>Decision theory: an introduction to the mathematics of rationality</i>, New York: John Wiley and Sons, 1986. es_ES
dc.description.references J. Von Neumann, O. Morgenstern, <i>Theory of games and economic behavior</i>, Princeton: Princeton University Press, 1944. es_ES
dc.description.references Z. Wu, D. L. St-Pierre, G. Abdul-Nour, Decision making under strict uncertainty: case study in sewer network planning, <i>Int. J. Comput. Infor. Eng.</i>, <b>11</b> (2017), 815–823. https://doi.org/10.5281/zenodo.1131355 es_ES
dc.description.references V. Ulansky, A. Raza, Generalization of minimax and maximin criteria in a game against nature for the case of a partial a priori uncertainty, <i>Heliyon</i>, <b>7</b> (2021), e07498. https://doi.org/10.1016/j.heliyon.2021.e07498 es_ES
dc.description.references M. Özkaya, B. İzgi, M. Perc, Axioms of Decision Criteria for 3D Matrix Games and Their Applications, <i>Math.</i>, <b>10</b> (2022), 4524. https://doi.org/10.3390/math10234524 es_ES
dc.description.references G. Balakina, E. Kibalov, M. Pyataev, System assessment of the Kyzyl-Kuragino railroad project as an element of Russia-Mongolia-China transport corridors, <i>Transpor. Res. Proc.</i>, <b>63</b> (2022), 1817–1825. https://doi.org/10.1016/j.trpro.2022.06.199 es_ES
dc.description.references M. Ehrgott, <i>Multicriteria optimization</i>, Berlin: Springer, 2005. es_ES
dc.description.references C. Romero, A note on distributive equity and social efficiency, <i>J. Agr. Econ.</i>, <b>52</b> (2001), 110–112. https://doi.org/10.1111/j.1477-9552.2001.tb00928.x es_ES
dc.description.references J. González-Pachón, C. Romero, Bentham, Marx and Rawls ethical principles: In search for a compromise, <i>Omega</i>, <b>62</b> (2016), 47–51. https://doi.org/10.1016/j.omega.2015.08.008 es_ES
dc.description.references J. Bentham, <i>An introduction to the principles of morals and legislation</i>, London: Payne and Son, 1789. es_ES
dc.description.references J. Rawls, <i>A theory of justice</i>, Oxford: Oxford University Press, 1973. es_ES


This item appears in the following Collection(s)

Show simple item record