- -

Pro-Myogenic Environment Promoted by the Synergistic Effect of Conductive Polymer Nanocomposites Combined with Extracellular Zinc Ions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Pro-Myogenic Environment Promoted by the Synergistic Effect of Conductive Polymer Nanocomposites Combined with Extracellular Zinc Ions

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Aparicio-Collado, José Luís es_ES
dc.contributor.author Molina Mateo, José es_ES
dc.contributor.author Torregrosa Cabanilles, Constantino es_ES
dc.contributor.author Vidaurre, Ana es_ES
dc.contributor.author Salesa, Beatriz es_ES
dc.contributor.author Serrano Aroca, Angel es_ES
dc.contributor.author Sabater i Serra, Roser es_ES
dc.date.accessioned 2023-07-12T18:00:59Z
dc.date.available 2023-07-12T18:00:59Z
dc.date.issued 2022-12 es_ES
dc.identifier.uri http://hdl.handle.net/10251/194871
dc.description.abstract [EN] Musculoskeletal tissue can self-regenerate after injury, however, this self-renewal capacity is limited in degenerative diseases or volumetric muscle loss. Tissue engineering strategies involving biomaterials, cells, and bioactive agents have emerged as a tool to regenerate damaged skeletal muscle. The role of biomaterials is not only to provide structural support for tissue regeneration but also to include some biophysical and biochemical cues that enhance cell proliferation and differentiation into different tissues. In this context, electrochemical cues are essential for myofiber motility and myoblast differentiation. Here, we engineered electrically conductive nanocomposites, which will promote bioactivity in the form of intrinsic surface conductivity, close to that of human skeletal muscle tissue. In addition, extracellular zinc ions were incorporated in the cell microenvironment as a myogenic factor. We show that the combination of both approaches acts synergically generating enhanced cell microenvironments that promote myogenesis. Abstract A new strategy based on the combination of electrically conductive polymer nanocomposites and extracellular Zn2+ ions as a myogenic factor was developed to assess its ability to synergically stimulate myogenic cell response. The conductive nanocomposite was prepared with a polymeric matrix and a small amount of graphene (G) nanosheets (0.7% wt/wt) as conductive filler to produce an electrically conductive surface. The nanocomposites¿ surface electrical conductivity presented values in the range of human skeletal muscle tissue. The biological evaluation of the cell environment created by the combination of the conductive surface and extracellular Zn2+ ions showed no cytotoxicity and good cell adhesion (murine C2C12 myoblasts). Amazingly, the combined strategy, cell¿material interface with conductive properties and Zn bioactive ions, was found to have a pronounced synergistic effect on myoblast proliferation and the early stages of differentiation. The ratio of differentiated myoblasts cultured on the conductive nanocomposites with extracellular Zn2+ ions added in the differentiation medium (serum-deprived medium) was enhanced by more than 170% over that of non-conductive surfaces (only the polymeric matrix), and more than 120% over both conductive substrates (without extracellular Zn2+ ions) and non-conductive substrates with extracellular Zn2+. This synergistic effect was also found to increase myotube density, myotube area and diameter, and multinucleated myotube formation. MyoD-1 gene expression was also enhanced, indicating the positive effect in the early stages of myogenic differentiation. These results demonstrate the great potential of this combined strategy, which stands outs for its simplicity and robustness, for skeletal muscle tissue engineering applications. es_ES
dc.description.sponsorship This research was funded by Spanish Ministry of Science and Innovation (MCINN, Agencia Estatal de Investigación/FEDER funds) through the RTI2018-097862-B-C21 (awarded to R.S.S. and J.M-M.) and PID2020-119333RB-I00/AEI/10.13039/501100011033 (awarded to Á.S-A.) projects,x]. CIBER-BBN is an initiative funded by the VI National R & D & I Plan 2008¿2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions were financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Biology es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Pro-myogenic environment es_ES
dc.subject Bioactive cell-material interface es_ES
dc.subject Conductive polymer nanocomposites es_ES
dc.subject Zinc ions es_ES
dc.subject Carbon nanomaterials es_ES
dc.subject Graphene es_ES
dc.subject Skeletal muscle tissue engineering es_ES
dc.subject.classification INGENIERIA ELECTRICA es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Pro-Myogenic Environment Promoted by the Synergistic Effect of Conductive Polymer Nanocomposites Combined with Extracellular Zinc Ions es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/biology11121706 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-119333RB-I00/ES/SOPORTES BIOFUNCIONALES CON CAPACIDAD OSTEOINDUCTORA Y ANTIMICROBIANA PARA INGENIERIA TISULAR OSEA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//PID2020-119333RB-I00%2FAEI%2F10.13039%2F501100011033 / es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-097862-B-C21/ES/MICROENTORNOS BIOACTIVOS, ELECTROCONDUCTIVOS Y ANTIMICROBIANOS CON CAPACIDAD DE ESTIMULAR LA REGENERACION OSEA Y PREVENIR INFECCIONES MULTIRRESISTENTES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Politécnica Superior de Gandia - Escola Politècnica Superior de Gandia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.description.bibliographicCitation Aparicio-Collado, JL.; Molina Mateo, J.; Torregrosa Cabanilles, C.; Vidaurre, A.; Salesa, B.; Serrano Aroca, A.; Sabater I Serra, R. (2022). Pro-Myogenic Environment Promoted by the Synergistic Effect of Conductive Polymer Nanocomposites Combined with Extracellular Zinc Ions. Biology. 11(12):1-19. https://doi.org/10.3390/biology11121706 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/biology11121706 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 19 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 12 es_ES
dc.identifier.eissn 2079-7737 es_ES
dc.identifier.pmid 36552216 es_ES
dc.identifier.pmcid PMC9774464 es_ES
dc.relation.pasarela S\478525 es_ES
dc.contributor.funder Instituto de Salud Carlos III es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem