Mostrar el registro sencillo del ítem
dc.contributor.author | Maire, Jeremie | es_ES |
dc.contributor.author | Chavez-Angel, Emigdio | es_ES |
dc.contributor.author | Arregui, Guillermo | es_ES |
dc.contributor.author | Colombano, M. F. | es_ES |
dc.contributor.author | Capuj, Nestor | es_ES |
dc.contributor.author | Griol Barres, Amadeu | es_ES |
dc.contributor.author | Martínez, Alejandro | es_ES |
dc.contributor.author | Navarro-Urrios, Daniel | es_ES |
dc.contributor.author | Ahopelto, J. | es_ES |
dc.contributor.author | Sotomayor-Torres, Clivia | es_ES |
dc.date.accessioned | 2023-07-12T18:01:02Z | |
dc.date.available | 2023-07-12T18:01:02Z | |
dc.date.issued | 2022-01 | es_ES |
dc.identifier.issn | 1616-301X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/194873 | |
dc.description.abstract | [EN] Controlling thermal energy transfer at the nanoscale and thermal properties has become critically important in many applications since it often limits device performance. In this study, the effects on thermal conductivity arising from the nanoscale structure of free-standing nanocrystalline silicon films and the increasing surface-to-volume ratio when fabricated into suspended optomechanical nanobeams are studied. Thermal transport and elucidate the relative impact of different grain size distributions and geometrical dimensions on thermal conductivity are characterized. A micro time-domain thermoreflectance method to study free-standing nanocrystalline silicon films and find a drastic reduction in the thermal conductivity, down to values below 10 W m¿1 K¿1 is used, with a stronger decrease for smaller grains. In optomechanical nanostructures, this effect is smaller than in membranes due to the competition of surface scattering in decreasing thermal conductivity. Finally, a novel versatile contactless characterization technique that can be adapted to any structure supporting a thermally shifted optical resonance is introduced. The thermal conductivity data agrees quantitatively with the thermoreflectance measurements. This study opens the way to a more generalized thermal characterization of optomechanical cavities and to create hotspots with engineered shapes at the desired position in the structures as a means to study thermal transport in coupled photon-phonon structures. | es_ES |
dc.description.sponsorship | This work was supported by the European Commission FET Open project PHENOMEN (G.A. Nr. 713450). ICN2 was supported by the S. Ochoa program from the Spanish Research Agency (AEI, grant no. SEV-2017-0706) and by the CERCA Programme / Generalitat de Catalunya. ICN2 authors acknowledge the support from the Spanish MICINN project SIP (PGC2018-101743-B-I00). D.N.U. and M.F.C. acknowledge the support of a Ramon y Cajal postdoctoral fellowship (RYC-2014-15392) and a Severo Ochoa studentship, respectively. E.C.A. acknowledges financial support from the EU FET Open Project NANOPOLY. (GA 829061). A.M. acknowledges support from Ministerio de Ciencia, Innovacion y Universidades (grant PGC2018-094490-B, PRX18/00126) and Generalitat Valenciana (grants PROMETEO/2019/123, and IDIFEDER/2018/033). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | Advanced Functional Materials | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Nanostructured materials | es_ES |
dc.subject | Optomechanics | es_ES |
dc.subject | Phonons | es_ES |
dc.subject | Polycrystalline | es_ES |
dc.subject | Silicon | es_ES |
dc.subject | Thermal characterization methods | es_ES |
dc.subject | Thermal conduction | es_ES |
dc.subject.classification | TEORÍA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | Thermal Properties of Nanocrystalline Silicon Nanobeams | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/adfm.202105767 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-094490-B-C21/ES/AVANZANDO EN CAVIDADES OPTOMECANICAS DE SILICO A TEMPERATURA AMBIENTE/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//PROMETEO%2F2019%2F123//NANOFOTONICA AVANZADA SOBRE SILICIO (AVANTI)/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/713450/EU | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EDUC.INVEST.CULT.DEP//IDIFEDER%2F2018%2F033//INCORPORACION DE LA TECNOLOGIA DE FABRICACION DE LAMINAS DELGADAS DE CARBURO DE SILICIO (SIC) PARA SU APLICACION EN NANOFOTONICA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//PPC%2F2018%2F0002//AYUDA PARQUES ALEJANDRO MARTINEZ ABIETAR/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//SEV-2017- 0706/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació | es_ES |
dc.description.bibliographicCitation | Maire, J.; Chavez-Angel, E.; Arregui, G.; Colombano, MF.; Capuj, N.; Griol Barres, A.; Martínez, A.... (2022). Thermal Properties of Nanocrystalline Silicon Nanobeams. Advanced Functional Materials. 32. https://doi.org/10.1002/adfm.202105767 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/adfm.202105767 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 32 | es_ES |
dc.relation.pasarela | S\449020 | es_ES |
dc.contributor.funder | GENERALITAT VALENCIANA | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | COMISION DE LAS COMUNIDADES EUROPEA | es_ES |