Mostrar el registro sencillo del ítem
dc.contributor.author | Osornio-Rios, Roque Alfredo | es_ES |
dc.contributor.author | Jaen-Cuellar, Arturo Yosimar | es_ES |
dc.contributor.author | Alvarado-Hernandez, Alvaro Ivan | es_ES |
dc.contributor.author | Zamudio-Ramírez, Israel | es_ES |
dc.contributor.author | Cruz-Albarran, Irving Armando | es_ES |
dc.contributor.author | Antonino Daviu, José Alfonso | es_ES |
dc.date.accessioned | 2023-07-14T18:01:18Z | |
dc.date.available | 2023-07-14T18:01:18Z | |
dc.date.issued | 2022-06-30 | es_ES |
dc.identifier.issn | 0263-2241 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/194997 | |
dc.description.abstract | [EN] Kinematic chains are essential elements configurable in different topologies according to the requirements of industry. Their main components are the rotating machines and mechanical parts in which diverse faults can appear. Nowadays, infrared imaging analysis has gained attention for monitoring kinematic chains, however, the approaches for detecting and classifying faults still can be improved. Therefore, this work presents a methodology that uses a low-cost infrared measurement system and combines adequate techniques, such as infrared images preprocessing and segmenting, extraction of statistical indicators, generation of a high-dimensional matrix of features, features reduction, and categorization, for accurately detecting and classifying a wide variety of fault conditions in kinematic chains. This approach was applied to a configurable kinematic chain under the following conditions: healthy motor, misalignment, unbalance, one and two broken rotor bars, bearing faults on the outer race, healthy gearbox, and gearbox wearing. The obtained results validate the effectiveness of the proposed methodology. | es_ES |
dc.description.sponsorship | The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Israel Zamudio-Ramirez reports financial support was provided by National Council on Science and Technology, Mexico through Scholarship with key code 2019-000037-02NACF. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Measurement | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Artificial neural networks | es_ES |
dc.subject | Image processing | es_ES |
dc.subject | Infrared imaging | es_ES |
dc.subject | Rotating machines | es_ES |
dc.subject | Statistical analysis | es_ES |
dc.subject.classification | INGENIERIA ELECTRICA | es_ES |
dc.title | Fault detection and classification in kinematic chains by means of PCA extraction-reduction of features from thermographic images | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.measurement.2022.111340 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CONACYT//2019-000037-02NACF/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials | es_ES |
dc.description.bibliographicCitation | Osornio-Rios, RA.; Jaen-Cuellar, AY.; Alvarado-Hernandez, AI.; Zamudio-Ramírez, I.; Cruz-Albarran, IA.; Antonino Daviu, JA. (2022). Fault detection and classification in kinematic chains by means of PCA extraction-reduction of features from thermographic images. Measurement. 197:1-9. https://doi.org/10.1016/j.measurement.2022.111340 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.measurement.2022.111340 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 9 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 197 | es_ES |
dc.relation.pasarela | S\464965 | es_ES |
dc.contributor.funder | Consejo Nacional de Ciencia y Tecnología, México | es_ES |