- -

AI-enabled autonomous drones for fast climate change crisis assessment

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

AI-enabled autonomous drones for fast climate change crisis assessment

Show full item record

Hernández, D.; Cano, J.; Silla, F.; Tavares De Araujo Cesariny Calafate, CM.; Cecilia-Canales, JM. (2022). AI-enabled autonomous drones for fast climate change crisis assessment. IEEE Internet of Things. 9(10):7286-7297. https://doi.org/10.1109/JIOT.2021.3098379

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/195082

Files in this item

Item Metadata

Title: AI-enabled autonomous drones for fast climate change crisis assessment
Author: Hernández, Daniel Cano, Juan-Carlos Silla, Federico Tavares De Araujo Cesariny Calafate, Carlos Miguel Cecilia-Canales, José María
UPV Unit: Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors
Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica
Issued date:
Abstract:
[EN] Climate change is one of the greatest challenges for modern societies. Its consequences, often associated with extreme events, have dramatic results worldwide. New synergies between different disciplines, including ...[+]
Subjects: Internet of Things , Clustering algorithms , Cloud computing , Edge computing , Pipelines , Performance evaluation , Drones , Climate Change , UAVs , Deep Learning , Artificial Vision , Sustainable ICT
Copyrigths: Reserva de todos los derechos
Source:
IEEE Internet of Things. (eissn: 2327-4662 )
DOI: 10.1109/JIOT.2021.3098379
Publisher:
Institute of Electrical and Electronics Engineers
Publisher version: https://doi.org/10.1109/JIOT.2021.3098379
Project ID:
info:eu-repo/grantAgreement/AGENCIA ESTATAL DE INVESTIGACION//RTC2019-007159-5//DESARROLLO DE INFRAESTRUCTURAS IOT DE ALTAS PRESTACIONES CONTRA EL CAMBIO CLIMÁTICO BASADAS EN INTELIGENCIA ARTIFICIAL/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-096384-B-I00/ES/SOLUCIONES PARA UNA GESTION EFICIENTE DEL TRAFICO VEHICULAR BASADAS EN SISTEMAS Y SERVICIOS EN RED/
info:eu-repo/grantAgreement/f SéNeCa//20813%2FPI%2F18/
info:eu-repo/grantAgreement/MICINN//RYC2018-025580-I/
info:eu-repo/grantAgreement/Conselleria d'Educació, Investigació, Cultura i Esport de la Generalitat Valenciana//AICO%2F2020%2F302/
Thanks:
This work was supported in part by the Spanish Ministry of Science and Innovation under Grant RYC2018-025580-I, Grant RTI2018-096384-B-I00, and Grant RTC2019-007159-5; in part by the Fundacien Seneca under Project 20813/PI/18; ...[+]
Type: Artículo

recommendations

 

This item appears in the following Collection(s)

Show full item record