- -

The challenge of managing the evolution of genomics data over time: a conceptual model-based approach

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The challenge of managing the evolution of genomics data over time: a conceptual model-based approach

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author García-Simón, Alberto es_ES
dc.contributor.author Costa-Sánchez, Mireia es_ES
dc.contributor.author León-Palacio, Ana es_ES
dc.contributor.author Pastor López, Oscar es_ES
dc.date.accessioned 2023-07-21T18:03:55Z
dc.date.available 2023-07-21T18:03:55Z
dc.date.issued 2022-11-09 es_ES
dc.identifier.issn 1471-2105 es_ES
dc.identifier.uri http://hdl.handle.net/10251/195316
dc.description.abstract [EN] Background Precision medicine is a promising approach that has revolutionized disease prevention and individualized treatment. The DELFOS oracle is a model-driven genomics platform that aids clinicians in identifying relevant variations that are associated with diseases. In its previous version, the DELFOS oracle did not consider the high degree of variability of genomics data over time. However, changes in genomics data have had a profound impact on clinicians¿ work and pose the need for changing past, present, and future clinical actions. Therefore, our objective in this work is to consider changes in genomics data over time in the DELFOS oracle. Methods Our objective has been achieved through three steps. First, we studied the characteristics of each database from which the DELFOS oracle extracts data. Second, we characterized which genomics concepts of the conceptual schema that supports the DELFOS oracle change over time. Third, we updated the DELFOS Oracle so that it can manage the temporal dimension. To validate our approach, we carried out a use case to illustrate how the new version of the DELFOS oracle handles the temporal dimension. Results Three events can change genomics data, namely, the addition of a new variation, the addition of a new link between a variation and a phenotype, and the update of a link between a variation and a phenotype. These events have been linked to the entities of the conceptual model that are affected by them. Finally, a new version of the DELFOS oracle that can deal with the temporal dimension has been implemented. Conclusion Huge amounts of genomics data that is associated with diseases change over time, impacting patients¿ diagnosis and treatment. Including this information in the DELFOS oracle added an extra layer of complexity, but using a model-driven based approach mitigated the cost of implementing the needed changes. The new version handles the temporal dimension appropriately and eases clinicians¿ work. es_ES
dc.description.sponsorship This work has been developed with the financial support of the Generalitat Valenciana and the Valencian Innovation Agency under the projects MICIN/AEI/ 10.13039/501100011033, PDC2021-121243-I00, CIPROM/2021/023, 2021/AP2021-05, ACIF/2021/117, and INNEST/2021/57 and co-financed with ERDF. It also has been supported by the Polytechnic University of Valencia through grant 20220366. es_ES
dc.language Inglés es_ES
dc.publisher Springer (Biomed Central Ltd.) es_ES
dc.relation.ispartof BMC Bioinformatics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Bioinformatics es_ES
dc.subject Temporal dimension es_ES
dc.subject Conceptual models es_ES
dc.subject SILE method es_ES
dc.subject DELFOS oracle es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title The challenge of managing the evolution of genomics data over time: a conceptual model-based approach es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1186/s12859-022-04944-z es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AGENCIA ESTATAL DE INVESTIGACION//PDC2021-121243-I00//PLATAFORMA DELFOS: SISTEMA DE INFORMACIÓN PARA LA GESTIÓN DE VARIACIONES GENOMICAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//20220366/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//CIPROM%2F2021%2F023/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AVI//INNEST%2F2021%2F57/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CIUCSD//ACIF%2F2021%2F117/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.description.bibliographicCitation García-Simón, A.; Costa-Sánchez, M.; León-Palacio, A.; Pastor López, O. (2022). The challenge of managing the evolution of genomics data over time: a conceptual model-based approach. BMC Bioinformatics. 23:1-32. https://doi.org/10.1186/s12859-022-04944-z es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1186/s12859-022-04944-z es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 32 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 23 es_ES
dc.identifier.pmid 36352353 es_ES
dc.identifier.pmcid PMC9648044 es_ES
dc.relation.pasarela S\477202 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Agència Valenciana de la Innovació es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital, Generalitat Valenciana es_ES
dc.description.references Duffy DJ. Problems, challenges and promises: perspectives on precision medicine. Brief Bioinform. 2016;17(3):494–504. https://doi.org/10.1093/bib/bbv060. es_ES
dc.description.references Hasin Y, Seldin M, Lusis A. Multi-omics approaches to disease. Genome Bio. 2017;18(1):83. https://doi.org/10.1186/s13059-017-1215-1. es_ES
dc.description.references Stephens ZD. Big data: astronomical or genomical? PLOS Biol. 2015;13(7):1002195. https://doi.org/10.1371/journal.pbio.1002195. es_ES
dc.description.references Vihinen M. Problems in variation interpretation guidelines and in their implementation in computational tools. Mol Genet Genomic Med. 2020;8(9):1206. https://doi.org/10.1002/mgg3.1206. es_ES
dc.description.references Rigden DJ, Fernández XM. The 2021 Nucleic Acids Research database issue and the online molecular biology database collection. Nucleic Acids Res. 2021;49(D1):1–9. https://doi.org/10.1093/nar/gkaa1216. es_ES
dc.description.references Galvão J, et al. Automating data integration in adaptive and data-intensive information systems. In: Information systems. Lecture notes in business information processing. Cham: Springer; 2020. pp. 20–34 https://doi.org/10.1007/978-3-030-63396-7_2. es_ES
dc.description.references Palacio AL, López OP. Smart data for genomic information systems: the SILE method. Complex Syst Inf Model Q. 2018;17:1–23. https://doi.org/10.7250/csimq.2018-17.01. es_ES
dc.description.references Costa M, León A, Pastor O. The importance of the temporal dimension in identifying relevant genomic variants: a case study. In: Grossmann G, Ram S, editors. Advances in conceptual modeling. Lecture notes in computer science. Cham: Springer; 2020. p. 51–60. https://doi.org/10.1007/978-3-030-65847-2_5. es_ES
dc.description.references Mersch JA. Prevalence of variant reclassification following hereditary cancer genetic testing. JAMA. 2018;320(12):1266–74. https://doi.org/10.1001/jama.2018.13152. es_ES
dc.description.references Landrum MJ, et al. ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 2018;46(D1):1062–7. https://doi.org/10.1093/nar/gkx1153. es_ES
dc.description.references Hunt SE, et al. Ensembl variation resources. Database. 2018. https://doi.org/10.1093/database/bay119. es_ES
dc.description.references Buniello A, et al. The NHGRI-EBI GWAS catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 2019;47(D1):1005–12. https://doi.org/10.1093/nar/gky1120. es_ES
dc.description.references Tate JG, et al. COSMIC: the catalogue of somatic mutations in cancer. Nucleic Acids Res. 2019;47(D1):941–7. https://doi.org/10.1093/nar/gky1015. es_ES
dc.description.references Walsh R, et al. Reassessment of Mendelian gene pathogenicity using 7,855 cardiomyopathy cases and 60,706 reference samples. Genet Med. 2017;19(2):192–203. https://doi.org/10.1038/gim.2016.90. es_ES
dc.description.references Plon SE, Rehm HL. The Ancestral pace of variant eeclassification. JNCI J Natl Cancer Inst. 2018;110(10):1133–4. https://doi.org/10.1093/jnci/djy075. es_ES
dc.description.references Slavin TP, et al. The effects of genomic germline variant reclassification on clinical cancer care. Oncotarget. 2019;10(4):417–23. https://doi.org/10.18632/oncotarget.26501. es_ES
dc.description.references Wong EK, et al. Perceptions of genetic variant reclassification in patients with inherited cardiac disease. Eur J Hum Genet. 2019;27(7):1134–42. https://doi.org/10.1038/s41431-019-0377-6. es_ES
dc.description.references Campuzano O, et al. Reanalysis and reclassification of rare genetic variants associated with inherited arrhythmogenic syndromes. EBioMedicine. 2020;54:102732. https://doi.org/10.1016/j.ebiom.2020.102732. es_ES
dc.description.references Miller DT, et al. ACMG SF v3.0 list for reporting of secondary findings in clinical exome and genome sequencing: a policy statement of the American College of Medical Genetics and Genomics (ACMG). Genet Med. 2021. https://doi.org/10.1038/s41436-021-01172-3. es_ES
dc.description.references Palacio AL, López ÓP, Ródenas JCC. A method to identify relevant genome data: conceptual modeling for the medicine of precision. In: Trujillo J, Davis KC, Du X, Li Z, Ling TW, Li G, Lee ML, editors. Conceptual modeling - 37th international conference, ER 2018, Proceedings. Lecture notes in computer science, vol. 11157. Springer; 2018. pp. 597–609. https://doi.org/10.1007/978-3-030-00847-5_44 es_ES
dc.description.references Ceri S, Bernasconi A, Canakoglu A, Gulino A, Kaitoua A, Masseroli M, Nanni L, Pinoli P. Overview of GeCo: a project for exploring and integrating signals from the genome. In: Kalinichenko L, Manolopoulos Y, Malkov O, Skvortsov N, Stupnikov S, Sukhomlin V, editors. Data analytics and management in data intensive domains. Communications in computer and information science. Cham: Springer; 2018. p. 46–57. https://doi.org/10.1007/978-3-319-96553-6_4. es_ES
dc.description.references Bernasconi A, Canakoglu A, Pinoli P, Ceri S. Empowering virus sequence research through conceptual modeling. In: Dobbie G, Frank U, Kappel G, Liddle SW, Mayr HC, editors. Conceptual modeling. Lecture notes in computer science. Cham: Springer; 2020. p. 388–402. https://doi.org/10.1007/978-3-030-62522-1_29. es_ES
dc.description.references Reyes Román JF, Marco Palomares A, García Simón A, Pastor O. A model-based application for the effective and efficient management of data associated with Retina-Macula Pathology. In: Augusto A, Gill A, Nurcan S, Reinhartz-Berger I, Schmidt R, Zdravkovic J, editors. Enterprise, business-process and information systems modeling. Lecture notes in business information processing. Cham: Springer; 2021. p. 366–79. https://doi.org/10.1007/978-3-030-79186-5_24. es_ES
dc.description.references García S. A, Iñiguez-Jarrín C, Lopez O, Gonzalez-Ibea D, Pérez-Román E, Borredà C, Terol J, Ibanez V, Talón M. Applying user centred design to improve the design of genomic user interfaces, 2021;25–35. https://www.scitepress.org/Link.aspx?doi=10.5220/0010187800250035 Accessed 09 Nov 2021. es_ES
dc.description.references Smith B, et al. The OBO foundry: coordinated evolution of ontologies to support biomedical data integration. Berlin: Nature Publishing Group; 2007. https://doi.org/10.1038/nbt1346. es_ES
dc.description.references Yon Rhee S, Wood V, Dolinski K, Draghici S. Use and misuse of the gene ontology annotations. Berlin: Nature Publishing Group; 2008. https://doi.org/10.1038/nrg2363. es_ES
dc.description.references Smith B, Williams J, Schulze-Kremer S. The ontology of the gene ontology. In: AMIA ... Annual Symposium proceedings / AMIA Symposium. AMIA Symposium 2003;2003, 609–613. es_ES
dc.description.references Ashburner M, et al. Creating the gene ontology resource: design and implementation. Genome Res. 2001;11(8):1425–33. https://doi.org/10.1101/gr.180801. es_ES
dc.description.references Jacobsen A, de Miranda Azevedo R, Juty N, Batista D, Coles S, Cornet R, Courtot M, Crosas M, Dumontier M, Evelo CT, Goble C, Guizzardi G, Hansen KK, Hasnain A, Hettne K, Heringa J, Hooft RWW, Imming M, Jeffery KG, Kaliyaperumal R, Kersloot MG, Kirkpatrick CR, Kuhn T, Labastida I, Magagna B, McQuilton P, Meyers N, Montesanti A, van Reisen M, Rocca-Serra P, Pergl R, Sansone S-A, da Silva Santos LOB, Schneider J, Strawn G, Thompson M, Waagmeester A, Weigel T, Wilkinson MD, Willighagen EL, Wittenburg P, Roos M, Mons B, Schultes E. FAIR principles: interpretations and implementation considerations. Data Intell. 2020;2(1–2):10–29. https://doi.org/10.1162/dint_r_00024. es_ES
dc.description.references Guizzardi G. Ontology, ontologies and the “I’’ of FAIR. Data Intell. 2020;2(1–2):181–91. https://doi.org/10.1162/dint_a_00040. es_ES
dc.description.references García S A, Casamayor JC. Towards the generation of a species-independent conceptual schema of the genome. In: Grossmann G, Ram S, editors. Advances in conceptual modeling. Cham: Springer; 2020. p. 61–70. es_ES
dc.description.references García SA, Casamayor JC. On how to generalize species-specific conceptual schemes to generate a species-independent conceptual schema of the genome. BMC Bioinform. 2021;22(13):353. https://doi.org/10.1186/s12859-021-04237-x. es_ES
dc.description.references García SA, Casamayor JC, Pastor O. ISGE: a conceptual model-based method to correctly manage genome data. In: Nurcan S, Korthaus A, editors. Intelligent information systems. Cham: Springer; 2021. p. 47–54. es_ES
dc.description.references León A, García SA, Costa M, Vañó Ribelles A, Pastor O. Evolution of an adaptive information system for precision medicine. In: Nurcan S, Korthaus A, editors. Intelligent information systems. Lecture notes in business information processing. Cham: Springer; 2021. https://doi.org/10.1007/978-3-030-79108-7_1. es_ES
dc.description.references Costa M. Diseño y Desarrollo de una Plataforma para la Gestión de Datos Genómicos: Oráculo Genómico de Delfos. Universitat Politècnica de València. 2021. http://hdl.handle.net/10251/173220. es_ES
dc.description.references Spreeuwenberg S, Henao P. AIX: artificial intelligence needs eXplanation: why and how transparency increases the success of AI solutions, 2019. es_ES
dc.description.references Iñiguez-Jarrin C. GenomIUm: a pattern based method for designing user interfaces for genomic data access. PhD Thesis, Universitat Politècnica de València, 2019. es_ES
dc.description.references Good BM, Ainscough BJ, McMichael JF, Su AI, Griffith OL. Organizing knowledge to enable personalization of medicine in cancer. Genome Biol. 2014;15(8):438. https://doi.org/10.1186/s13059-014-0438-7. es_ES
dc.description.references García Simón A, Costa Sánchez M, Pastor O. Characterization and treatment of the temporal dimension of genomic variations: a conceptual model-based approach. In: Reinhartz-Berger I, Sadiq S, editors. Advances in conceptual modeling. Lecture notes in Computer Science. Cham: Springer; 2021. p. 104–13. https://doi.org/10.1007/978-3-030-88358-4_9. es_ES
dc.description.references Wieringa RJ. Design science methodology for information systems and software engineering. Cham: Springer; 2014. es_ES
upv.costeAPC 1650 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem