Abad-Segura, E., González-Zamar, M.-D., Infante-Moro, J.C., & Ruipérez García, G. (2020). Sustainable management of digital transformation in higher education: Global research trends. Sustainability, 12(5), 2107. https://doi.org/10.3390/su12052107
Abualigah, L.M., Khader, A.T., & Hanandeh, E.S. (2018). A hybrid strategy for krill herd algorithm with harmony search algorithm to improve the data clustering? Intelligent Decision Technologies, 12(1), 3-14. https://doi.org/10.3233/IDT-170318
Alharbi, A.S.M., & de Doncker, E. (2019). Twitter sentiment analysis with a deep neural network: An enhanced approach using user behavioral information. Cognitive Systems Research, 54, 50-61. https://doi.org/10.1016/j.cogsys.2018.10.001
[+]
Abad-Segura, E., González-Zamar, M.-D., Infante-Moro, J.C., & Ruipérez García, G. (2020). Sustainable management of digital transformation in higher education: Global research trends. Sustainability, 12(5), 2107. https://doi.org/10.3390/su12052107
Abualigah, L.M., Khader, A.T., & Hanandeh, E.S. (2018). A hybrid strategy for krill herd algorithm with harmony search algorithm to improve the data clustering? Intelligent Decision Technologies, 12(1), 3-14. https://doi.org/10.3233/IDT-170318
Alharbi, A.S.M., & de Doncker, E. (2019). Twitter sentiment analysis with a deep neural network: An enhanced approach using user behavioral information. Cognitive Systems Research, 54, 50-61. https://doi.org/10.1016/j.cogsys.2018.10.001
Arain, M.S., Khan, M.A., & Kalwar, M.A. (2020). Optimization of Target Calculation Method for Leather Skiving and Stamping: Case of Leather Footwear Industry. International Journal of Business Education and Management Studies (IJBEMS), 7(1), 15-30. https://www.ijbems.com/doc/IJBEMS-137.pdf
Baig, M.A., Shaikh, S.A., Khatri, K.K., Shaikh, M.A., Khan, M.Z., & Rauf, M.A. (2023). Prediction of Students Performance Level Using Integrated Approach of ML Algorithms. International Journal of Emerging Technologies in Learning, 18(1), 216-234. https://doi.org/10.3991/ijet.v18i01.35339
Bansal, J.C., Sharma, H., Jadon, S.S., & Clerc, M. (2014). Spider monkey optimization algorithm for numerical optimization. Memetic Computing, 6, 31-47. https://doi.org/10.1007/s12293-013-0128-0
Benavides, L.M.C., Tamayo Arias, J.A., Arango Serna, M.D., Branch Bedoya, J.W., & Burgos, D. (2020). Digital transformation in higher education institutions: A systematic literature review. Sensors, 20(11), 3291. https://doi.org/10.3390/s20113291
Boateng, E.Y., Otoo, J., & Abaye, D.A. (2020). Basic tenets of classification algorithms K-nearest-neighbor, support vector machine, random forest and neural network: a review. Journal of Data Analysis and Information Processing, 8(4), 341-357. https://doi.org/10.4236/jdaip.2020.84020
Bouazizi, M., & Ohtsuki, T. (2017). A pattern-based approach for multi-class sentiment analysis in Twitter. IEEE Access, 5, 20617-20639. https://doi.org/10.1109/ACCESS.2017.2740982
Bouazizi, M., & Ohtsuki, T. (2018). Multi-class sentiment analysis in Twitter: What if classification is not the answer. IEEE Access, 6, 64486-64502. https://doi.org/10.1109/ACCESS.2018.2876674
Brownlee, J. (2016). Supervised and Unsupervised Machine Learning Algorithms. Machine Learning Mastery, 6(3). https://machinelearningmastery.com/supervised-and-unsupervised-machine-learning-algorithms/
Brownlee, J. (2019). Machine learning mastery with Weka. Ebook. Edition, 1(4).
Buriro, M.A., Rahoo, L.A., Nagar, Muhammad Ali Khan; Kalhoro, M., Kalhoro, S., & Halepota, A.A. (2018). Social Media used for promoting the Libraries and Information Resources and services at University Libraries of Sindh Province. Proceedings of IEEE International Conference on Innovative Research and Development (ICIRD). https://doi.org/10.1109/ICIRD.2018.8376293
Channar, P.B., Ahmed, G., Thebo, J.A., Khan, M.A., & Rahoo, L.A. (2023). Factors Of Knowledge Sharing Among Faculty Members In Higher Educational Institutions: An Empirical Study Of The Public Sector. Journal of Positive School Psychology, 7(4), 1498-1506. https://journalppw.com/index.php/jpsp/article/view/16622
Chaudhry, A.K., Kalwar, M.A., Khan, M.A., & Shaikh, S.A. (2021). Improving the Efficiency of Small Management Information
System by Using VBA. International Journal of Science and Engineering Investigations, 10(111), 7-13. http://www.ijsei.com/papers/ijsei-1011121-02.pdf
Chauhan, N.S. (2020). Decision tree algorithm, explained. KDnuggets,[Online]. Available: https://www.kdnuggets.com/2020/01/Decision-Tree-Algorithm-Explained.html .[Accessed 16 April 2021].
Chugh, A., Sharma, V.K., Kumar, S., Nayyar, A., Qureshi, B., Bhatia, M.K., & Jain, C. (2021). Spider monkey crow optimization algorithm with deep learning for sentiment classification and information retrieval. IEEE Access, 9, 24249-24262. https://doi.org/10.1109/ACCESS.2021.3055507
Dabbura, I. (2018). K-means clustering: Algorithm, applications, evaluation methods, and drawbacks. Towards Data Science.
Datavedas. (2018). Classification Problems. Datavedas Classification Problems.
Ducange, P., Fazzolari, M., Petrocchi, M., & Vecchio, M. (2019). An effective Decision Support System for social media listening based on cross-source sentiment analysis models. Engineering Applications of Artificial Intelligence, 78, 71-85. https://doi.org/10.1016/j.engappai.2018.10.014
Gao, L., Wang, Y., Li, D., Shao, J., & Song, J. (2017). Real-time social media retrieval with spatial, temporal and social constraints. Neurocomputing, 253, 77-88. https://doi.org/10.1016/j.neucom.2016.11.078
Golubic, S., & Marusic, D. (1999). Reviews and inspections-an approach to the improvement of telecom software development process. Proceedings ConTEL, 99, 283-290.
Hassan, A.U., Hussain, J., Hussain, M., Sadiq, M., & Lee, S. (2017). Sentiment analysis of social networking sites (SNS) data using machine learning approach for the measurement of depression. 2017 International Conference on Information and Communication Technology Convergence (ICTC), 138-140. https://doi.org/10.1109/ICTC.2017.8190959
Injadat, M., Moubayed, A., Nassif, A.B., & Shami, A. (2021). Machine learning towards intelligent systems: applications, challenges, and opportunities. Artificial Intelligence Review, 54, 3299-3348. https://doi.org/10.1007/s10462-020-09948-w
Iqbal, F., Hashmi, J.M., Fung, B.C.M., Batool, R., Khattak, A.M., Aleem, S., & Hung, P.C.K. (2019). A hybrid framework for sentiment analysis using genetic algorithm based feature reduction. IEEE Access, 7, 14637-14652. https://doi.org/10.1109/ACCESS.2019.2892852
Jianqiang, Z., Xiaolin, G., & Xuejun, Z. (2018). Deep convolution neural networks for twitter sentiment analysis. IEEE Access, 6, 23253-23260. https://doi.org/10.1109/ACCESS.2017.2776930
Kaggle. (2023). Amazon Reviews: Unlocked Mobile Phones. https://www.kaggle.com/datasets/PromptCloudHQ/amazon-reviews-unlocked-mobile-phones
Kalwar, M.A., & khan. (2020). Optimization of Procurement & Purchase Order Process in Foot Wear Industry by Using VBA in Ms Excel. International Journal of Business Education and Management Studies (IJBEMS), 6(1), 213-220. https://ijbems.com/doc/IJBEMS-124.pdf
Kalwar, M.A., & Khan, M.A. (2020a). Increasing performance of footwear stitching line by installation of auto-trim stitching machines. Journal of Applied Research in Technology & Engineering (JARTE), 1(1), 31. https://doi.org/10.4995/jarte.2020.13788
Kalwar, M.A., & Khan, M.A. (2020b). Optimization of Procurement & Purchase Order Process in Foot Wear Industry by Using VBA in Ms Excel. International Journal of Business Education and Management Studies (IJBEMS), 5(2), 80-100.
Kalwar, M.A., Khan, M.A., Shahzad, M.F., Wadho, M.H., & Marri, H.B. (2022). Development of linear programming model for optimization of product mix and maximization of profit: case of leather industry. Journal of Applied Research in Technology & Engineering (JARTE), 3(1), 67-78. https://doi.org/10.4995/jarte.2022.16391
Kalwar, M.A., Marri, H.B., & Khan, M.A. (2021). Performance Improvement of Sale Order Detail Preparation by Using Visual Basic for Applications: A Case Study of Footwear Industry. International Journal of Business Education and Management Studies (IJBEMS), 3(1), 1-22. https://ijbems.com/doc/IJBEMS-159.pdf
Kalwar, M.A., Shahzad, M.F., Wadho, M.H., Khan, M.A., & Shaikh, S.A. (2022). Automation of order costing analysis by using Visual Basic for applications in Microsoft Excel. Journal of Applied Research in Technology & Engineering (JARTE), 3(1), 29-59. https://doi.org/10.4995/jarte.2022.16390
Kalwar, M.A., Shaikh, S.A., Khan, M.A., & Malik, T.S. (2020). Optimization of Vendor Rate Analysis Report Preparation Method by Using Visual Basic for Applications in Excel (Case Study of Footwear Company of Lahore). Proceedings of the International Conference on Industrial Engineering and Operations Management (IEOM, Dhaka, Bangladesh, December 26-27. https://ieomsociety.org/proceedings/2021dhaka/228.pdf
Kalwar, M.A., Wassan, A.N., Phul, Z., & Wadho, M.H., Malik, T.S., Khan, M.A. (2023). Automation of material cost comparative analysis report using VBA Excel: a case of footwear company of Lahore. Journal of Applied Research in Technology & Engineering (JARTE), 4(1), 13-23. https://doi.org/10.4995/jarte.2023.18776
Khan, M.A., Kalwar, M.A., & Chaudhry, A.K. (2021). Optimization of material delivery time analysis by using Visual Basic for applications in Excel. Journal of Applied Research in Technology & Engineering (JARTE), 2(2), 89. https://doi.org/10.4995/jarte.2021.14786
Khan, M.A., Kalwar, M.A., Malik, A.J., Malik, T.S., & Chaudhry, A.K. (2021). Automation of Supplier Price Evaluation Report in MS Excel by Using Visual Basic for Applications: A Case of Footwear Industry. International Journal of Science and Engineering Investigations (IJSEI), 10(113), 49-60. http://www.ijsei.com/papers/ijsei-1011321-08.pdf
Khan, M.Z., Khan, A.A., Laghari, A.A., Shaikh, Z.A., Kaimkhani, M.A., Morkovkin, D., Gavel, O., Shkodinsky, S., Taburov, D., & Makar, S. (2022). Comparative case study: an evaluation of performance computation between support vector machine, K-nearest comparative study: Evaluation of performance computation between support vector component analysis. Journal of Tianjin University Science and Technology, April. https://doi.org/10.17605/OSF.IO/HK3SF
Khan, M.Z., Shaikh, S.A., Shaikh, M.A., Khatri, K.K., Mahira Abdul Rauf, Kalhoro, A., & Muhammad, A. (2023). The Performance Analysis of Machine Learning Algorithms for Credit Card Fraud Detection. International Journal of Online and Biomedical Engineering (IJOE), 19(03), 82-98. https://doi.org/10.3991/ijoe.v19i03.35331
Khan, M.Z., Zaman, F.U., Adnan, M., Imroz, A., & Rauf, M.A. (2022). Comparative Case Study: An Evaluation of Performance Computation Between SQL And NoSQL Database. Sindh Journal of Headways in Software Engineering (SJHSE), 01(02), 14-23.
Kumar, S., Nayyar, A., Nguyen, N.G., & Kumari, R. (2020). Hyperbolic spider monkey optimization algorithm. Recent Advances in Computer Science and Communications (Formerly: Recent Patents on Computer Science), 13(1), 35-42. https://doi.org/10.2174/2213275912666181207155334
Kumar, S., Sharma, B., Sharma, V.K., & Poonia, R.C. (2021). Automated soil prediction using bag-of-features and chaotic spider monkey optimization algorithm. Evolutionary Intelligence, 14, 293-304. https://doi.org/10.1007/s12065-018-0186-9
Kumar, S., Sharma, B., Sharma, V.K., Sharma, H., & Bansal, J.C. (2020). Plant leaf disease identification using exponential spider monkey optimization. Sustainable Computing: Informatics and Systems, 28, 100283. https://doi.org/10.1016/j.suscom.2018.10.004
Li, L., Xu, Q., Gan, T., Tan, C., & Lim, J.-H. (2017). A probabilistic model of social working memory for information retrieval in social interactions. IEEE Transactions on Cybernetics, 48(5), 1540-1552. https://doi.org/10.1109/TCYB.2017.2706027
Mansour, S. (2018). Social media analysis of user's responses to terrorism using sentiment analysis and text mining. Procedia Computer Science, 140, 95-103. https://doi.org/10.1016/j.procs.2018.10.297
Mata-Rivera, F., Torres-Ruiz, M., Guzman, G., Moreno-Ibarra, M., & Quintero, R. (2015). A collaborative learning approach for geographic information retrieval based on social networks. Computers in Human Behavior, 51, 829-842. https://doi.org/10.1016/j.chb.2014.11.069
Mataoui, M., Sebbak, F., Benhammadi, F., & Bey, K.B. (2015). Query expansion in XML information retrieval: A new approach for terms selection. 2015 6th International Conference on Modeling, Simulation, and Applied Optimization (ICMSAO), 1-4. https://doi.org/10.1109/ICMSAO.2015.7152208
Matt, C., Hess, T., & Benlian, A. (2015). Digital transformation strategies. Business & Information Systems Engineering, 57, 339-343. https://doi.org/10.1007/s12599-015-0401-5
Mbaabu, O. (2020). Introduction to random forest in machine learning. Berreskuratua-(e) Tik https://www.Section.Io/Engineering-Education/Introduction-to-Random-Forest-in-Machine-Learning.
Memon, M., Khan, M.A., & Rahoo, L.A. (2020). Usage and Availability of Information and Communication Technology Applications Facilities at Central Library. International Research Journal in Computer Science and Technology (IRJCST), 1(1), 86-92. http://irjcst.com/index.php/irjcst/article/view/7/6
Munjal, P., Kumar, L., Kumar, S., & Banati, H. (2019). Evidence of Ostwald Ripening in opinion driven dynamics of mutually competitive social networks. Physica A: Statistical Mechanics and Its Applications, 522, 182-194. https://doi.org/10.1016/j.physa.2019.01.109
Munjal, P., Kumar, S., Kumar, L., & Banati, A. (2017). Opinion dynamics through natural phenomenon of grain growth and population migration. Hybrid Intelligence for Social Networks, 161-175. https://doi.org/10.1007/978-3-319-65139-2_7
Munjal, P., Narula, M., Kumar, S., & Banati, H. (2018). Twitter sentiments based suggestive framework to predict trends. Journal of Statistics and Management Systems, 21(4), 685-693. https://doi.org/10.1080/09720510.2018.1475079
Nagar, M.A.K., Kalhoro, M., & Kalhoro, S. (2018). Information Seeking Behavior of Research Scholars at MUET Library & Online Information Center, Jamshoro: A Study. Journal of Library Philosophy and Practice, August, 1-8.
Nagar, M.A.K., Rahoo, L.A., Rehman, H.A., & Arshad, S. (2018). Education management information systems in the primary schools of sindh a case study of hyderabad division. 2018 IEEE 5th International Conference on Engineering Technologies and Applied Sciences (ICETAS), 1-5. https://doi.org/10.1109/ICETAS.2018.8629249
Nitze, I., Schulthess, U., & Asche, H. (2012). Comparison of machine learning algorithms random forest, artificial neural network and support vector machine to maximum likelihood for supervised crop type classification. Proceedings of the 4th GEOBIA, Rio de Janeiro, Brazil, 79, 3540.
Pant, A. (2019). Introduction to logistic regression. Average. Towards Data Science.
Rahoo, L.A., Khan, M.A., Buriro, M.A., Baladi, Z.H., & Abbasi, M.S. (2020). Evaluation of Information Services from the Perspective of Faculties and Evaluation of Information Services from the Perspective of Faculties and Students of Mehran University Engineering and Technology, Jamshoro Pakistan. International Journal of Disaster Recovery and Business Continuity, 11(1), 1526-1538. http://sersc.org/journals/index.php/IJDRBC/article/view/20339
Rahoo, L.A., Nagar, M.A.K., & Bhutto, A. (2019). The Use of Information Retrieval Tools by the Postgraduate Students of Higher Educational Institutes of Pakistan. Asian Journal of Contemporary Education, 3(1), 59-64. https://doi.org/10.18488/journal.137.2019.31.59.64
Reis, I., Baron, D., & Shahaf, S. (2018). Probabilistic random forest: A machine learning algorithm for noisy data sets. The Astronomical Journal, 157(1), 16. https://doi.org/10.3847/1538-3881/aaf101
Reno, U. (2023). Intelligent Systems. Department of Computer Science & Engineering, University of Nevada, Reno, USA. https://www.unr.edu/cse/undergraduates/prospective-students/what-are-intelligent-systems
Riverside, U. (2023). Intelligent Systems. Department of Electrical and Computer Engineering, University of California, Riverside, USA. https://www.ece.ucr.edu/research/intelligentsystems
Sarker, I.H. (2021). Machine learning: Algorithms, real-world applications and research directions. SN Computer Science, 2(3), 160. https://doi.org/10.1007/s42979-021-00592-x
Schott, M. (2019). Random forest algorithm for machine learning. Medium. Com. https://medium.com/capital-one-tech/random-forest-algorithm-for-machine-learning-C4b2c8cc9feb (Erişim 4 Ocak 2021).
Schütze, H., Manning, C.D., & Raghavan, P. (2008). Introduction to information retrieval (Vol. 39). Cambridge University Press Cambridge. https://doi.org/10.1017/CBO9780511809071
Shah, I., El Affendi, M., & Qureshi, B. (2020). SRide: An online system for multi-hop ridesharing. Sustainability, 12(22), 9633. https://doi.org/10.3390/su12229633
Sharma, A., Sharma, A., Panigrahi, B.K., Kiran, D., & Kumar, R. (2016). Ageist spider monkey optimization algorithm. https://doi.org/10.1016/j.swevo.2016.01.002
Swarm and Evolutionary Computation, 28, 58-77. https://doi.org/10.1016/j.swevo.2016.01.002
Sheldon, R., & Wigmore, I. (2023). Intelligent System. Techtarget Network. https://www.techtarget.com/whatis/definition/intelligent-system
Singhal, A. (2001). Modern information retrieval: A brief overview. IEEE Data Eng. Bull., 24(4), 35-43.
Tess, P.A. (2013). The role of social media in higher education classes (real and virtual)-A literature review. Computers in Human Behavior, 29(5), A60-A68. https://doi.org/10.1016/j.chb.2012.12.032
Tutorialspoint. (2023). Classification Algorithms - Random Forest. Machine Learning with Python, Tutorialspoint. Classification Algorithms - Random Forest
Vial, G. (2019). Understanding digital transformation: A review and a research agenda. The Journal of Strategic Information Systems, 28(2), 118-144. https://doi.org/10.1016/j.jsis.2019.01.003
Virmani, C., Juneja, D., & Pillai, A. (2018). Design of query processing system to retrieve information from social network using NLP. KSII Transactions on Internet and Information Systems (TIIS), 12(3), 1168-1188. https://doi.org/10.3837/tiis.2018.03.011
Zaman, F.U., Khuhro, M.A., Kumar, K., Mirbahar, N., Khan, Z., & Kalhoro, A. (2021). Comparative Case Study Difference Between Azure Cloud SQL and Mongo Atlas MongoDB NoSQL Database. International Journal of Emerging Trends in Engineering Research, 9(7), 999-1002. https://doi.org/10.30534/ijeter/2021/26972021
Zhang, L., Tan, J., Han, D., & Zhu, H. (2017). From machine learning to deep learning: progress in machine intelligence for rational drug discovery. Drug Discovery Today, 22(11), 1680-1685. https://doi.org/10.1016/j.drudis.2017.08.010
[-]