Ramirez Hoyos, P.; Cervera, J.; Manzanares, JA.; Nasir, S.; Ali, M.; Ensinger, W.; Mafe, S. (2022). Electrical conductance of conical nanopores: Symmetric and asymmetric salts and their mixtures. The Journal of Chemical Physics. 157(14):144702-1-144702-11. https://doi.org/10.1063/5.0119910
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/195417
[EN] We have studied experimentally the electrical conductance-voltage curves of negatively and positively charged conical nanopores bathed in ionic solutions with monovalent, divalent, and trivalent cations at electrochemically ...[+]
[EN] We have studied experimentally the electrical conductance-voltage curves of negatively and positively charged conical nanopores bathed in ionic solutions with monovalent, divalent, and trivalent cations at electrochemically and biologically relevant ionic concentrations. To better understand the interaction between the pore surface charge and the mobile ions, both single salts and salt mixtures have been considered. We have paid attention to the effects on the conductance of the cation valency, the pore charge asymmetry, and the pore charge inversion phenomena due to trivalent ions, both in single salts and salt mixtures. In addition, we have described how small concentrations of multivalent ions can tune the nanopore conductance due to monovalent majority ions, together with the effect of these charges on the additivity of ionic conductance and fluoride-induced negative differential conductance phenomena. This compilation and discussion of previously presented experimental data offers significant insights on the interaction between fixed and mobile charges confined in nanoscale volumes and should be useful in establishing and checking new models for describing ionic transport in the vicinity of charged surfaces.[-]
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-097359-B-I00/ES/NANOESTRUCTURAS POROSAS DE INSPIRACION BIOLOGICA: ANALISIS Y CONTROL DE SEÑALES ELECTRICAS/
Descripción:
This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in (Cervera, J., Ramirez, P., Nasir, S., Ali, M., Ensinger, W., Siwy, Z. S., & Mafe, S. (2023). Cation pumping against a concentration gradient in conical nanopores characterized by load capacitors. Bioelectrochemistry, 152, 108445, and may be found at https://doi.org/10.1063/5.0119910.
Agradecimientos:
P.R., J.C., J.A.M., and S.M. acknowledge the support from the Ministerio de Ciencia, Innovación y Universidades (Spain), and the European Regional Development Funds (FEDER), Project No.
PGC2018-097359-B-I00. M.A., S.N., ...[+]
P.R., J.C., J.A.M., and S.M. acknowledge the support from the Ministerio de Ciencia, Innovación y Universidades (Spain), and the European Regional Development Funds (FEDER), Project No.
PGC2018-097359-B-I00. M.A., S.N., and W.E. acknowledge the funding from the Hessen State Ministry of Higher Education, Research and the Arts, Germany, under the LOEWE project iNAPO.[-]