Mostrar el registro sencillo del ítem
dc.contributor.author | Ruiz-González, Mario X. | es_ES |
dc.contributor.author | Vicente, Oscar | es_ES |
dc.date.accessioned | 2023-07-24T18:02:50Z | |
dc.date.available | 2023-07-24T18:02:50Z | |
dc.date.issued | 2022-10-01 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/195427 | |
dc.description.abstract | [EN] Background: Climate change affects every region across the globe with heterogeneous effects on local temperatures and precipitation patterns. In plants, sessile organisms, climate change imposes more drastic effects leading to loss of yield or even death. However, plants establish mutualistic interactions with microorganisms that boost plant tolerance against abiotic stresses or strengthen the plant immune system against pathogens, thus, enhancing their survival and fitness. Moreover, in the wild, microbial endophytes provide important ecosystem services. Purpose and scope: Little we know about the mechanisms of response against the adverse effects of climate change on natural populations of wild plants and even less about the potential role played by microbial biostimulants. In this article, we review the effects of biostimulants on plant responses against abiotic stresses, with a particular focus on the role of mycorrhizas and leaf endophytes. Results: We have reviewed the effects of the main abiotic stresses in plants, the mechanisms that plants use to face these abiotic challenges, and the interaction plant-biostimulant-abiotic stress, highlighting the primary responses and parameters to evaluate different plant responses. Conclusion: Abiotic stresses can check the phenotypic plasticity of plants and also trigger a complex and heterogeneous array of responses to face different abiotic stresses, and beneficial microorganisms do play an essential role in enhancing such responses. Our laboratory has initiated a project to characterise microbial populations associated with plants from wild areas and analyse their potential role in aiding the plants to cope with abiotic stresses. | es_ES |
dc.description.sponsorship | This study was supported by a Maria Zambrano distinguished researcher contract to MXR-G, and funded by both the Ministerio de Universidades (Gobierno de Espana) and the Next generation EU. The authors have no competing financial interests. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | European Biotechnology Thematic Network Association | es_ES |
dc.relation.ispartof | The Eurobiotech Journal | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Abiotic stress | es_ES |
dc.subject | Climate change | es_ES |
dc.subject | Phenotypic plasticity | es_ES |
dc.subject | Endophyte | es_ES |
dc.subject | Mutualism | es_ES |
dc.subject.classification | BIOQUIMICA Y BIOLOGIA MOLECULAR | es_ES |
dc.title | The Microbially Extended Phenotype of Plants, a Keystone against Abiotic Stress | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.2478/ebtj-2022-0017 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana | es_ES |
dc.description.bibliographicCitation | Ruiz-González, MX.; Vicente, O. (2022). The Microbially Extended Phenotype of Plants, a Keystone against Abiotic Stress. The Eurobiotech Journal. 6(4):174-182. https://doi.org/10.2478/ebtj-2022-0017 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.2478/ebtj-2022-0017 | es_ES |
dc.description.upvformatpinicio | 174 | es_ES |
dc.description.upvformatpfin | 182 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 6 | es_ES |
dc.description.issue | 4 | es_ES |
dc.identifier.eissn | 2564-615X | es_ES |
dc.relation.pasarela | S\476369 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Ministerio de Universidades | es_ES |
dc.description.references | 1. Kassen R. The experimental evolution of specialists, generalists, and the maintenance of diversity. J Evol Biol 2002; 15:173-190.10.1046/j.1420-9101.2002.00377.x | es_ES |
dc.description.references | 2. Elewa AMT & Joseph R. The History, Origins, and Causes of Mass Extinctions. J Cosmol 2009); 2: 201-220. | es_ES |
dc.description.references | 3. Raup D, Sepkowski JJ. Mass Extinctions in the Marine Fossil Record. Science 1982; 215:1501-1503. doi: 10.1126/science.215.4539.150117788674 | es_ES |
dc.description.references | 4. Butchart SHM, Walpole M, Collen B, van Strien A, Scharlemann JPW, et al. Global Biodiversity: Indicators of Recent Declines. Science 2010; 328:1164-1168. doi: 10.1126/science.118751220430971 | es_ES |
dc.description.references | 5. IPCC. Climate Change 2021. Intergovernmental Panel on Climate Change, Switzerland 202110.1017/9781009157988 | es_ES |
dc.description.references | 6. Scheffers BR, De Meester L, Bridge TCL, et al. The broad footprint of climate change from genes to biomes to people. Science 2016; 354(6313):aaf7671.10.1126/science.aaf767127846577 | es_ES |
dc.description.references | 7. Breazeale JF. A study of the toxicity of salines that occur in black alkali soils. Ariz Agr Exp Sta Tech Bul 2021; 14:337-357. | es_ES |
dc.description.references | 8. Imran QM, Falak N, Hussain A, Mun B-G, Yun B-W. Abiotic Stress in Plants; Stress Perception to Molecular Response and Role of Biotechnological Tools in Stress Resistance. Agronomy 2021; 11:1579. doi: 10.3390/agronomy11081579. | es_ES |
dc.description.references | 9. Boyer JS. Plant productivity and environment. Science 1982; 218:443-448. doi: 10.1126/science.218.4571.443.17808529 | es_ES |
dc.description.references | 10. He M, He C-Q, Ding N-Z. Abiotic stresses: general defences of land plants and chances for engineering multistress tolerance. Front Plant Sci 2018; 9:1771. doi: 10.3389/fpls.2018.01771.629287130581446 | es_ES |
dc.description.references | 11. Martí MC, Stancombe MA, Webb AAR. Cell- and Stimulus Type-Specific Intracellular Free Ca2+ Signals in Arabidopsis. Plant Physiol 2013; 163:625-634. doi: 10.1104/pp.113.222901379304324027243 | es_ES |
dc.description.references | 12. Liu Q, Ding Y, Shi Y, Ma L, Wang Y, et al. The calcium transporter ANNEXIN1 mediates cold-induced calcium signaling and freezing tolerance in plants. The EMBO J 2021; 40:e104559.10.15252/embj.2020104559780978633372703 | es_ES |
dc.description.references | 13. Zhang H, Zhu J, Gong Z, Zhu J-K. Abiotic stress in plants. Nat Rev Genet 2022; 23:104-119. doi: 10.1038/s41576-021-00413-034561623 | es_ES |
dc.description.references | 14. Jung J-H, Domijan M, Klose C, Biswas S, Ezer D, et al. Phytochromes function as thermosensors in Arabidopsis. Science 2016; 354:886-889.10.1126/science.aaf600527789797 | es_ES |
dc.description.references | 15. Legris M, Klose C, Burgie AE, et al. Phytochrome B integrates light and temperature signals in Arabidopsis. Science 2016; 354:897-900.10.1126/science.aaf565627789798 | es_ES |
dc.description.references | 16. Krishna P. Plant response to heat stress. In: Hirt H, Shinozaki K, eds. Plant Responses to Abiotic Stress, Topics in Current Genetics; 2004:73-101.10.1007/978-3-540-39402-0_4 | es_ES |
dc.description.references | 17. Alvarez-Ponce D, Ruiz-González MX, Vera-Sirera F, Feyertag F, Perez-Amador MA, Fares MA. Arabidopsis Heat Stress-Induced Proteins Are Enriched in Electrostatically Charged Amino Acids and Intrinsically Disordered Regions. Int J Mol Sci 2018; 19:2276.10.3390/ijms19082276612153130081447 | es_ES |
dc.description.references | 18. Kai H & Iba K. Temperature stress in Plants. In eLS; John Wiley & Sons, Chichester; 2014.10.1002/9780470015902.a0001320.pub2 | es_ES |
dc.description.references | 19. Hu Y & Schmidhalter U. Limitation of salt stress to plant growth. In Hock B, Elsner EF, eds. Plant Toxicology 4th ed. Boca Raton, FL, CRC Press; 2004:191-22410.1201/9780203023884.ch5 | es_ES |
dc.description.references | 20. Daliakopoulos IN, Tsanis IK, Koutroulis A, et al. The threat of soil salinity: A European scale review. Sci Total Environ 2016; 573: 727-739.10.1016/j.scitotenv.2016.08.17727591523 | es_ES |
dc.description.references | 21. Parihar P, Singh S, Singh R, Singh, VP, Prasad SM. Effect of salinity stress on plants and its tolerance strategies: a review. Environ Sci Pollut Res 2015; 22:4056–4075.10.1007/s11356-014-3739-125398215 | es_ES |
dc.description.references | 22. Harper RJ, Dell B, Ruprecht JK, Sochacki SJ & Smetten KRJ. Salinity and the reclamation of salinized lands. In: Stanturf JA, Callahan Jr MA eds. Soils and Landscape Restoration. Academic Press, Elsevier, 2021:193-208.10.1016/B978-0-12-813193-0.00007-2 | es_ES |
dc.description.references | 23. Al-shareef NO, Tester M. Plant Salinity Tolerance. In: eLS. John Wiley & Sons, Ltd: Chichester 2019. doi:10.1002/9780470015902.a0001300.pub310.1002/9780470015902.a0001300.pub3 | es_ES |
dc.description.references | 24. Kumar A, Singh S, Gaurav AK, Srivastava S & Verma JP. Plant Growth-Promoting Bacteria: Biological Tools for the Mitigation of Salinity Stress in Plants. Front Microbiol 2020; 11:1216.10.3389/fmicb.2020.01216 | es_ES |
dc.description.references | 25. Roy SJ, Negrao S, Tester M. Salt resistant crop plants. Curr Op Biotechnol 2014; 26:115–124. doi: 10.1016/j.cop-bio.2013.12.004 | es_ES |
dc.description.references | 26. Molden D, Vithanage M, de Fraiture C, et al. Availability and Its Use in Agriculture. In: Wilderer P, ed. Treatise on Water Science, Elsevier; 2011:707–732.10.1016/B978-0-444-53199-5.00108-1 | es_ES |
dc.description.references | 27. Farooq M, Hussain M, Wahid A & Siddique KHM. Drought stress in plants: an overview. In: Aroca R ed. Plant responses to drought stress, Springer. 2012.10.1007/978-3-642-32653-0_1 | es_ES |
dc.description.references | 28. Zargar SM, Gupta N, Nazir M, et al. Impact of drought on photosynthesis: Molecular perspective. Plant Gene 2017; 11:154-159. doi: 10.1016/j.plgene.2017.04.00 | es_ES |
dc.description.references | 29. Wang W, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 2003; 218:1-14. doi: 10.1007/s00425-003-1105-5 | es_ES |
dc.description.references | 30. Sultan SE. Phenotypic plasticity for plant development, function and life history. Trends Plant Sci 2000; 5(12):537-542.10.1016/S1360-1385(00)01797-0 | es_ES |
dc.description.references | 31. Boscaiu M, Lull C, Lidón A, et al. Plant responses to abiotic stress in their natural habitats. Bull UASVM, Horticulture 2008; 65:53-58. | es_ES |
dc.description.references | 32. Bradshaw AD. Evolutionary Significance of Phenotypic Plasticity in Plants. Adv Genet 1965; 13:115–155. doi: 10.1016/s0065-2660(08)6004 | es_ES |
dc.description.references | 33. Bonnier G. Les plantes de la région alpine et leurs rapports avec le climat. Ann Géograph 1895; 4(17):393-413. doi: https://doi.org/10.3406/geo.1895.5724.10.3406/geo.1895.5724 | es_ES |
dc.description.references | 34. Matesanz S, Gianoli E, Valladares F. Global change and the evolution of phenotypic plasticity in plants. Ann NY Acad Sci 2010; 1206:35-55. doi: 10.1111/j.1749-6632.2010.05704.x20860682 | es_ES |
dc.description.references | 35. Schlichting, C. D. 1986. The Evolution of Phenotypic Plasticity in Plants. Ann. Rev. Ecol. Syst. 17, 667–693. doi: 10.1146/annurev.es.17.1101 | es_ES |
dc.description.references | 36. Gordo, O. & Sanz J. J. 2010. Impact of climate change on plant phenology in Mediterranean ecosystems. Global change Biol. 16, 1082-1106. doi: 10.1111/j.1365-2486.2009.02084.x | es_ES |
dc.description.references | 37. Meier U, Bleiholder H, Buhr L, et al. The BBCH system to coding the phenological growth stages of plants – history and publications – J KULTURPFL 2009; 61(2):S41–52. | es_ES |
dc.description.references | 38. Bradley NL, Leopold AC, Ross J & Huffaker W. Phenological changes reflect climate change in Wisconsin. PNAS 1999; 96:9701-9704. doi: 10.1073/pnas.96.17.97012227310449757 | es_ES |
dc.description.references | 39. Fitter AH & Fitter RSR. Rapid Changes in Flowering Time in British Plants. Science 2002; 296: 1689-1691. doi: 10.1126/science.107161 | es_ES |
dc.description.references | 40. Lee HK, Lee SJ, Kim MK & Lee SD. Prediction of Plant Phenological Shift under Climate Change in South Korea. Sustainability 2020; 12:9276.10.3390/su12219276 | es_ES |
dc.description.references | 41. Primack RB, Ibáñez I, Higuchi H, et al. Spatial and interspecific variability in phenological responses to warming temperatures. Biol Conserv 2009; 142:2569-2577. doi: 10.1016/j.biocon.2009.06.003 | es_ES |
dc.description.references | 42. Bond WJ. Keystone Species. In: Schulze E-D et al. eds. Biodiversity and Ecosystem Function, Springer-Verlag Berlin Heidelberg, 1994:237–253. doi: 10.1007/978-3-642-58001-7_11. | es_ES |
dc.description.references | 43. Rawat US; Agarwal NK. Biodiversity: Concept, threats and conservation. Environ Conserv J 2015; 16:9-28. doi: 10.36953/ECJ.2015.16303 | es_ES |
dc.description.references | 44. Costanza R, et al. The value of the world’s ecosystem services and natural capital. Nature 1997; 387:253-260.10.1038/387253a0 | es_ES |
dc.description.references | 45. Barbier EB, Hacker SD, Kennedy C, Koch EW, Stier AC, Sillman BR. The value of estuarine and coastal ecosystem services. Ecol Mon 2011; 81(2):169-193.10.1890/10-1510.1 | es_ES |
dc.description.references | 46. Gedan KB, Silliman BR & Bertness MD. Centuries of human-driven change in salt marsh ecosystems. Annu Rev Mar Sci 2009; 1:117–41.10.1146/annurev.marine.010908.16393021141032 | es_ES |
dc.description.references | 47. Adams JB, Raw JL, Riddin T, Wasserman J, Van Niekerk L.. Salt marsh restoration for the provision of multiple ecosystem services. Diversity 2021; 13:680. doi: 10.3390/d13120680 | es_ES |
dc.description.references | 48. Stevanović ZD, Aćić S, Stešević D, Luković M, Šilc U. Halophytic vegetation in South-east Europe: Classification, conservation and ecogeographical patterns. In: Hasanuzzaman M, Shabala S, Fujita M, eds. Halophytes and climate change. CAB International, UK; 2019:55-68.10.1079/9781786394330.0055 | es_ES |
dc.description.references | 49. Rothschild LJ, Mancinelli RL. Life in extreme environments. Nature 2001; 409:1092-1101.10.1038/3505921511234023 | es_ES |
dc.description.references | 50. Galuzzi G, Seyoum A, Halewood M, López Noriega I & Welch EW. The Role of Genetic Resources in Breeding for Climate Change: The Case of Public Breeding Programmes in Eighteen Developing Countries. Plants 2020; 9:1129. doi: 10.3390/plants9091129756978032878309 | es_ES |
dc.description.references | 51. Passamonti MM, Somenzi E, Barbato M, et al. The Quest for Genes Involved in Adaptation to Climate Change in Ruminant Livestock. Animals 2021; 11:2833. doi: 10.3390/ani11102833853262234679854 | es_ES |
dc.description.references | 52. Carroll G. Fungal Endophytes in Stems and Leaves: From Latent Pathogen to Mutualistic Symbiont. Ecology 1988; 69:2–9. doi: 10.2307/1943154 | es_ES |
dc.description.references | 53. Rodriguez RJ, White Jr JF, Arnold AE, Redman RS. Fungal endophytes: diversity and functional roles. New Phytol 2009; 182:314-330. doi: 10.1111/j.1469-8137.2009.02773.x19236579 | es_ES |
dc.description.references | 54. Bonfante P & Anca I-A. Plants, Mycorrhizal Fungi, and Bacteria: A Network of Interactions. Annu Rev Microbiol 2009; 63:363-383. doi: 10.1146/annurev.micro.091208.07350419514845 | es_ES |
dc.description.references | 55. Redecker D, Kodner R, Graham LE. Glomalean Fungi from the Ordovician. Science 2000; 289:1920-1921. doi: 10.1126/science.289.5486.19 | es_ES |
dc.description.references | 56. van der Heijden MGA, Klironomos JN, Ursic M, et al. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 1998; 396:69-72.10.1038/23932 | es_ES |
dc.description.references | 57. Chen M, Arato M, Borghi L, Nouri E & Reinhardt D. Beneficial services or arbuscular mycorrhizal fungi – From ecology to application. Front Plant Sci 2018; 9:1270.10.3389/fpls.2018.01270613219530233616 | es_ES |
dc.description.references | 58. Hardoim PR, et al. The Hidden World within Plants: Ecological and Evolutionary Considerations for Defining Functioning of Microbial Endophytes. Microbiol Mol Biol Rev 2015; 79:293-320. doi: 10.1128/MMBR.00050-14.448837126136581 | es_ES |
dc.description.references | 59. Link HF. Observationes in ordines plantarum naturales, dissertatio prima, complectens anandrarum ordines Epiphytas, Mucedines, Gastromycos et Fungos. Der Gesellschaft Naturforschender Freunde zu Berlin, Berlin, Germany. 1809:3-42. https://hdl.handle.net/2027/hvd.32044106318025 | es_ES |
dc.description.references | 60. Berch SM, Massicotte HB & Tackaberry LE. Re-publication of a translation of ‘The vegetative organs of Monotropa hypopitys L.’ published by F. Kamienski in 1882, with an update on Monotropa mycorrhizas. Mycorrhiza 2005; 15:323-332. doi: 10.1007/s00572-004-0334-1.15549481 | es_ES |
dc.description.references | 61. Frank AB. Über die auf Wurzelsymbiose beruhende Ernährung gewisser Bäume durch unterirdische Pilze. Ber Dtsch Bot Ges 1885; 3: 128–145. | es_ES |
dc.description.references | 62. Woronin MS. Über die bei der schwarzerle (Alnus glutinosa) und der gewöhnlichen garten-lupine (Lupinus mutabilis) auftretenden Wurzelaufschwellungen. Mém de l’Acad Imp des Sciences de St-Petersbourg 1866; X6. | es_ES |
dc.description.references | 63. Marquez LM, Redamn RS, Rodriguez RJ, Roossinck MJ. A Virus in a Fungus in a Plant: Three-Way Symbiosis Required for Thermal Tolerance. Science 2007; 315:513-515. doi: 10.1126/science.113623717255511 | es_ES |
dc.description.references | 64. Roossinck MJ. The good viruses: viral mutualistic symbioses. Nat Rev Microbiol 2011; 9: 99-108. doi: 10.1038/nr-micro2491 | es_ES |
dc.description.references | 65. Lata R, Chowdhury S, Gond S K, White Jr JF. Induction of abiotic stress tolerance in plants by endophytic microbes. Lett. Appl. Microbiol. 2018; 66:268-276. | es_ES |
dc.description.references | 66. Drobeck M, Frac M & Cybulska J. Plant Biostimulants: Importance of the Quality and Yield of Horticultural Crops and the Improvement of Plant Tolerance to Abiotic Stress—A Review. Agronomy 2019; 9:335. doi: 10.3390/agronomy9060335 | es_ES |
dc.description.references | 67. Poveda J. Beneficial effects of microbial volatile compounds (MVOCs) in plants. Appl Soil Ecol 2021; 168:104118. doi: 10.1016/j.apsoil.2021.104118 | es_ES |
dc.description.references | 68. Povero G, Mejoa JF, Di Tommaso D, Piaggesi A, Warrior P. A systematic approach to discover and characterize natural plant Biostimulants. Front Plant Sci 2016; 7:435.10.3389/fpls.2016.00435482045627092156 | es_ES |
dc.description.references | 69. Akiyama K, Matsuzaki K-I, Hayashi H. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 2005; 435:824-827.10.1038/nature0360815944706 | es_ES |
dc.description.references | 70. Gutjar C & Parniske M. Cell and Developmental Biology of Arbuscular Mycorrhiza Symbiosis. Annu Rev Cell Dev Biol 2013; 29:593–617.10.1146/annurev-cellbio-101512-12241324099088 | es_ES |
dc.description.references | 71. Souza R, Ambrosini A, Passagliaa LMP. Plant growth-promoting bacteria as inoculants in agriculture soils. Genet Mol Biol 2015; 38 (4):401-419.10.1590/S1415-475738420150053476332726537605 | es_ES |
dc.description.references | 72. Lee E-H, Eo J-K, Ka K-H & Eom A-H. Diversity of arbuscular mycorrhizal fungi and their roles in ecosystems. Mycobiology 2013; 41(3):121-125.10.5941/MYCO.2013.41.3.121381722524198665 | es_ES |
dc.description.references | 73. Garbaye J. Helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytol 1994; 128:197–210.10.1111/j.1469-8137.1994.tb04003.x33874371 | es_ES |
dc.description.references | 74. Brundrett MC. Coevolution of roots and mycorrizas of land plants. New Phytol 2002; 154:275-304.10.1046/j.1469-8137.2002.00397.x33873429 | es_ES |
dc.description.references | 75. Brundrett MC, Terdersoo L. Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol 2018; 220:1108–1115.10.1111/nph.1497629355963 | es_ES |
dc.description.references | 76. Leroy C, Séjalon-Delmas N, Jauneau A, Ruiz-González MX, et al. Trophic mediation by a fungus in an ant–plant mutualism. J Ecol 2011; 99:583-590. doi: 10.1111/j.1365-2745.2010.01763.x | es_ES |
dc.description.references | 77. Moore D, Robson GD, Trinci APJ. 21st Century Guidebook to Fungi, 2019.10.1017/9781108776387 | es_ES |
dc.description.references | 78. Gianinazzi S, Gollotte A, Binet M-N, van Tuinen D, Redecker D & Wipf D. Agroecology: the key role of arbuscular mycorrhizas in ecosystems services. Mycorrhiza 2010; 20:519-530.10.1007/s00572-010-0333-320697748 | es_ES |
dc.description.references | 79. Goh C-H, Veliz Vallejos DF, Nicotra AB & Mathesius U. The impact of beneficial plant-associated microbes on plant phenotypic plasticty. J Chem Ecol 2013; 39:826-839.10.1007/s10886-013-0326-8373883823892542 | es_ES |
dc.description.references | 80. Poudel M, Mendes R, Costa LAS, et al. The Role of Plant-Associated Bacteria, Fungi, and Viruses in Drought Stress Mitigation. Front Microbiol 2021; 12:743512. doi: 10.3389/fmicb.2021.743512857335634759901 | es_ES |
dc.description.references | 81. Feng G, Zhang FS, Li XL, Tian CY, Tang C, Rengel Z. Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza 2002; 12:185-90.10.1007/s00572-002-0170-012189473 | es_ES |
dc.description.references | 82. Augé RM. Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 2001; 11:3-42.10.1007/s005720100097 | es_ES |
dc.description.references | 83. Carvalho LM, Correia PM, Caçador I & Martins-Louçao AM. Effects of salinity and flooding on the infectivity of salt marsh arbuscular mycorrhizal fungi in Aster tripolium L. Biol Fertil Soils 2003; 38:137-143.10.1007/s00374-003-0621-6 | es_ES |
dc.description.references | 84. Lubna, Muhammad AK, Sajjad A, Rahmatullah J, Muhammad W, Kyung-Min K & In-Jung L. Endophytic fungus Bi-polaris sp. CSL-1 induces salt tolerance in Glycine max.L via modulating its endogenous hormones, antioxidative system and gene expression. J Plant Interact 2022; 17: 319-332. doi: 10.1080/17429145.2022.2036836. | es_ES |
dc.description.references | 85. Qing L, Zhehong H, Caisheng D, Kuan-Hung L, Shumei H & ShiPeng C. Endophytic Klebsiella sp. San01 promotes growth performance and induces salinity and drought tolerance in sweet potato (Ipomoea batatas L.), J Plant Interact 2022; 17: 608-619. doi: 10.1080/17429145.2022.2077464 | es_ES |
dc.description.references | 86. O’Brien AM, Ginnan NA, Rebolleda-Gómez M, Wagner MR. Microbial effects on plant phenology and fitness. Am J Bot 2021; 108:1824–1837. doi: 10.1002/ajb2.174334655479 | es_ES |
dc.description.references | 87. Wagner MR, Lundberg DS, Coleman-Derr D, Tringe SG, Dangl JL, Mitchell-Olds T. Natural soil microbes alter flowering phenology and the intensity of selection on flowering time in a wild Arabidopsis relative. Ecol Lett 2014; 17:717-726. doi: 10.1111/ele.12276404835824698177 | es_ES |
dc.description.references | 88. Orozco-Mosqueda MC, Fadiji AE, Babalola OO, Glick BR & Santoyo G. Rhizobiome engineering: Unveiling complex rhizosphere interactions to enhance plant growth and health. Microbiol Res 2022; 263: 127137. doi: 10.1016/j.micres.2022.12713735905581 | es_ES |
dc.description.references | 89. Glick BR. Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 2010; 28:367-374.10.1016/j.biotechadv.2010.02.00120149857 | es_ES |
dc.description.references | 90. Qian S, Xiaoshuang S, Xun D, Jiayu L, Junkai W, Kai M & Ruiqing S. Effects of plant growth promoting Rhizobacteria microbial on the growth, rhizosphere soil properties, and bacterial community of Pinus sylvestris var. mongolica seedlings. Scand J For Res 2021; 36: 249-262. doi: 10.1080/02827581.2021.1917649 | es_ES |
dc.description.references | 91. Ulrich DEM, Sevanto S, Ryan M, Albright MBN, Johansen RB & Dunbar JM. Plant-microbe interactions before drought influence plant physiological responses to subsequent severe drought. Sci Rep 2019; 9: 249. doi: 10.1038/s41598-018-36971-3634297830670745 | es_ES |
dc.description.references | 92. de Almeida JR, Bonatelli ML, Durante Batista B, Teixeira-Silva NS, Mondin M, dos Santos RC, Simoes Bento, JM, Azevedo Jm, Quecine MC. Bacillus thuringiensis RZ2MS9, a tropical plant growth-promoting rhizobacterium, colonizes maize endophytically and alters the plant’s production of volatile organic compounds during co-inoculation with Azospirillum brasilense Ab-V5. Environ Microbiol Rep 2021: 13: 812–821 doi: 10.1111/1758-2229.1300434433236 | es_ES |
dc.description.references | 93. Bonatelli ML, Lacerda-Júnior GV, dos Reis Junior FB, Fernandes-Júnior PV, Soares Melo I & Quecine MC. Beneficial plant-associated microorganisms from semi-arid regions and seasonally dry environments: a review. Front Microbiol 2021; 11:553223.10.3389/fmicb.2020.553223784545333519722 | es_ES |
dc.description.references | 94. Lemfack MC, Gohlke B-O, Toguem SMT, et al. mVOC 2.0: a database of microbial volatiles. Nucleic Acids Res 2018; 46(D1):D1261-D1265.10.1093/nar/gkx1016575329729106611 | es_ES |
dc.description.references | 95. Morsy MR, Oswald J, He J, Tang Y & Roossinck MJ. Teasing apart a three-way symbiosis: transcriptome analyses of Curvularia protuberata in response to viral infection and heat stress. Biochem Biophys Res Commun 2010; 401:225–230. doi: 10.1016/j.bbrc.2010.09.03420849822 | es_ES |
dc.subject.ods | 13.- Tomar medidas urgentes para combatir el cambio climático y sus efectos | es_ES |
dc.subject.ods | 15.- Proteger, restaurar y promover la utilización sostenible de los ecosistemas terrestres, gestionar de manera sostenible los bosques, combatir la desertificación y detener y revertir la degradación de la tierra, y frenar la pérdida de diversidad biológica | es_ES |