Mostrar el registro sencillo del ítem
dc.contributor.author | Aineto, Diego | es_ES |
dc.contributor.author | Jiménez-Celorrio, Sergio | es_ES |
dc.contributor.author | Onaindia De La Rivaherrera, Eva | es_ES |
dc.date.accessioned | 2023-07-25T18:02:00Z | |
dc.date.available | 2023-07-25T18:02:00Z | |
dc.date.issued | 2022 | es_ES |
dc.identifier.issn | 1076-9757 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/195465 | |
dc.description.abstract | [EN] A declarative action model is a compact representation of the state transitions of dynamic systems that generalizes over world objects. The specification of declarative action models is often a complex hand-crafted task. In this paper we formulate declarative action models via state constraints, and present the learning of such models as a combinatorial search. The comprehensive framework presented here allows us to connect the learning of declarative action models to well-known problem solving tasks. In addition, our framework allows us to characterize the existing work in the literature according to four dimensions: (1) the target action models, in terms of the state transitions they define; (2) the available learning examples; (3) the functions used to guide the learning process, and to evaluate the quality of the learned action models; (4) the learning algorithm. Last, the paper lists relevant successful applications of the learning of declarative actions models and discusses some open challenges with the aim of encouraging future research work. | es_ES |
dc.description.sponsorship | This work is supported by the Spanish MINECO project TIN2017-88476-C2-1-R and partially supported by the EU ICT-48 2020 project TAILOR (No. 952215). D. Aineto is partially supported by the FPU16/03184 and S. Jimenez by the RYC15/18009. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | AI Access Foundation | es_ES |
dc.relation.ispartof | Journal of Artificial Intelligence Research | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | A Comprehensive Framework for Learning Declarative Action Models | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1613/jair.1.13073 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-88476-C2-1-R/ES/RECONOCIMIENTO DE ACTIVIDADES Y PLANIFICACION AUTOMATICA PARA EL DISEÑO DE ASISTENTES INTELIGENTES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/952215/EU | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MECD//FPU16%2F03184/ES/FPU16%2F03184/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//RYC-2015-18009/ES/RYC-2015-18009/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica | es_ES |
dc.description.bibliographicCitation | Aineto, D.; Jiménez-Celorrio, S.; Onaindia De La Rivaherrera, E. (2022). A Comprehensive Framework for Learning Declarative Action Models. Journal of Artificial Intelligence Research. 74:1091-1123. https://doi.org/10.1613/jair.1.13073 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1613/jair.1.13073 | es_ES |
dc.description.upvformatpinicio | 1091 | es_ES |
dc.description.upvformatpfin | 1123 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 74 | es_ES |
dc.relation.pasarela | S\469130 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Ministerio de Educación, Cultura y Deporte | es_ES |