- -

A Comprehensive Framework for Learning Declarative Action Models

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Comprehensive Framework for Learning Declarative Action Models

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Aineto, Diego es_ES
dc.contributor.author Jiménez-Celorrio, Sergio es_ES
dc.contributor.author Onaindia De La Rivaherrera, Eva es_ES
dc.date.accessioned 2023-07-25T18:02:00Z
dc.date.available 2023-07-25T18:02:00Z
dc.date.issued 2022 es_ES
dc.identifier.issn 1076-9757 es_ES
dc.identifier.uri http://hdl.handle.net/10251/195465
dc.description.abstract [EN] A declarative action model is a compact representation of the state transitions of dynamic systems that generalizes over world objects. The specification of declarative action models is often a complex hand-crafted task. In this paper we formulate declarative action models via state constraints, and present the learning of such models as a combinatorial search. The comprehensive framework presented here allows us to connect the learning of declarative action models to well-known problem solving tasks. In addition, our framework allows us to characterize the existing work in the literature according to four dimensions: (1) the target action models, in terms of the state transitions they define; (2) the available learning examples; (3) the functions used to guide the learning process, and to evaluate the quality of the learned action models; (4) the learning algorithm. Last, the paper lists relevant successful applications of the learning of declarative actions models and discusses some open challenges with the aim of encouraging future research work. es_ES
dc.description.sponsorship This work is supported by the Spanish MINECO project TIN2017-88476-C2-1-R and partially supported by the EU ICT-48 2020 project TAILOR (No. 952215). D. Aineto is partially supported by the FPU16/03184 and S. Jimenez by the RYC15/18009. es_ES
dc.language Inglés es_ES
dc.publisher AI Access Foundation es_ES
dc.relation.ispartof Journal of Artificial Intelligence Research es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title A Comprehensive Framework for Learning Declarative Action Models es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1613/jair.1.13073 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-88476-C2-1-R/ES/RECONOCIMIENTO DE ACTIVIDADES Y PLANIFICACION AUTOMATICA PARA EL DISEÑO DE ASISTENTES INTELIGENTES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/952215/EU es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU16%2F03184/ES/FPU16%2F03184/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RYC-2015-18009/ES/RYC-2015-18009/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.description.bibliographicCitation Aineto, D.; Jiménez-Celorrio, S.; Onaindia De La Rivaherrera, E. (2022). A Comprehensive Framework for Learning Declarative Action Models. Journal of Artificial Intelligence Research. 74:1091-1123. https://doi.org/10.1613/jair.1.13073 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1613/jair.1.13073 es_ES
dc.description.upvformatpinicio 1091 es_ES
dc.description.upvformatpfin 1123 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 74 es_ES
dc.relation.pasarela S\469130 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem