Mostrar el registro sencillo del ítem
dc.contributor.author | Esteve, Daniel | es_ES |
dc.contributor.author | Molina-Navarro, María Micaela | es_ES |
dc.contributor.author | Giraldo-Reboloso, Esther | es_ES |
dc.contributor.author | Martínez-Varea, Noelia | es_ES |
dc.contributor.author | Blanco-Gandia, Mari Carmen | es_ES |
dc.contributor.author | Rodríguez-Arias, Marta | es_ES |
dc.contributor.author | García-Verdugo, Jose Manuel | es_ES |
dc.contributor.author | Viña, José | es_ES |
dc.contributor.author | Lloret, Ana | es_ES |
dc.date.accessioned | 2023-07-26T18:02:18Z | |
dc.date.available | 2023-07-26T18:02:18Z | |
dc.date.issued | 2022-02 | es_ES |
dc.identifier.issn | 0893-7648 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/195605 | |
dc.description.abstract | [EN] Neurogenesis in the adult brain takes place in two neurogenic niches: the ventricular-subventricular zone (V-SVZ) and the subgranular zone. After differentiation, neural precursor cells (neuroblasts) have to move to an adequate position, a process known as neuronal migration. Some studies show that in Alzheimer's disease, the adult neurogenesis is impaired. Our main aim was to investigate some proteins involved both in the physiopathology of Alzheimer's disease and in the neuronal migration process using the APP/PS1 Alzheimer's mouse model. Progenitor migrating cells are accumulated in the V-SVZ of the APP/PS1 mice. Furthermore, we find an increase of Cdh1 levels and a decrease of Cdk5/p35 and cyclin B1, indicating that these cells have an alteration of the cell cycle, which triggers a senescence state. We find less cells in the rostral migratory stream and less mature neurons in the olfactory bulbs from APP/PS1 mice, leading to an impaired odour discriminatory ability compared with WT mice. Alzheimer's disease mice present a deficit in cell migration from V-SVZ due to a senescent phenotype. Therefore, these results can contribute to a new approach of Alzheimer's based on senolytic compounds or pro-neurogenic factors. | es_ES |
dc.description.sponsorship | Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This work was supported by the following grants: Instituto de Salud Carlos III CB16/10/00435 (CIBER-FES), (PID2019-110906RB-I00/AEI/10.13039/501100011033) from the Spanish Ministry of Innovation and Science, PROMETEO/2019/097 from `Conselleria, de Sanitat de la Generalitat Valenciana' and EU Funded H2020-DIABFRAIL-LATAM (Ref: 825546), European Joint Programming Initiative `A Healthy Diet for a Healthy Life' (JPI HDHL) and of the ERA-NET Cofound ERA-HDHL (GA No 696295 of the EU Horizon 2020 Research and Innovation Programme). Part of the equipment employed in this work has been funded by Generalitat Valenciana and co-financed with ERDF funds (OP ERDF of Comunitat Valenciana 2014-2020). Special Research Actions from University of Valencia (REF: UV-INV-AE-1546096). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Molecular Neurobiology | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Subventricular zone | es_ES |
dc.subject | Beta-amyloid toxicity | es_ES |
dc.subject | Neurogenesis | es_ES |
dc.subject | Senescence | es_ES |
dc.subject | Olfaction | es_ES |
dc.subject.classification | BIOLOGIA CELULAR | es_ES |
dc.title | Adult Neural Stem Cell Migration Is Impaired in a Mouse Model of Alzheimer's Disease | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s12035-021-02620-6 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-110906RB-I00/ES/NUEVAS INTERVENCIONES TERAPEUTICAS MULTIDOMINIO PARA RETRASAR LA FRAGILIDAD Y LA DISCAPACIDAD. IDENTIFICACION DE MECANISMOS MOLECULARES CON RELEVANCIA TRASLACIONAL/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2019%2F097/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/696295/EU | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ISCIII//CB16%2F10%2F00435//CIBER-FES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/825546/EU | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UV//UV-INV-AE-1546096/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural | es_ES |
dc.description.bibliographicCitation | Esteve, D.; Molina-Navarro, MM.; Giraldo-Reboloso, E.; Martínez-Varea, N.; Blanco-Gandia, MC.; Rodríguez-Arias, M.; García-Verdugo, JM.... (2022). Adult Neural Stem Cell Migration Is Impaired in a Mouse Model of Alzheimer's Disease. Molecular Neurobiology. 59(2):1168-1182. https://doi.org/10.1007/s12035-021-02620-6 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s12035-021-02620-6 | es_ES |
dc.description.upvformatpinicio | 1168 | es_ES |
dc.description.upvformatpfin | 1182 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 59 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.pmid | 34894324 | es_ES |
dc.identifier.pmcid | PMC8857127 | es_ES |
dc.relation.pasarela | S\458322 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Universitat de València | es_ES |
dc.contributor.funder | Instituto de Salud Carlos III | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.description.references | Alvarez-Buylla A, Garcia-Verdugo JM (2002) Neurogenesis in adult subventricular zone. J Neurosci 22(3):629–634 | es_ES |
dc.description.references | Christian KM, Song H, Ming GL (2014) Functions and dysfunctions of adult hippocampal neurogenesis. Annu Rev Neurosci 37:243–262 | es_ES |
dc.description.references | Fares J, Bou Diab Z, Nabha S, Fares Y (2019) Neurogenesis in the adult hippocampus: history, regulation, and prospective roles. Int J Neurosci 129(6):598–611 | es_ES |
dc.description.references | Obernier K, Alvarez-Buylla A (2019) Neural stem cells: origin, heterogeneity and regulation in the adult mammalian brain. Development. 146(4): dev156059. | es_ES |
dc.description.references | Doetsch F, Petreanu L, Caille I, Garcia-Verdugo JM, Alvarez-Buylla A (2002) EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron 36(6):1021–1034 | es_ES |
dc.description.references | Doetsch F, García-Verdugo JM, Alvarez-Buylla A (1997) Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci 17(13):5046–5061 | es_ES |
dc.description.references | Lois C, Alvarez-Buylla A (1994) Long-distance neuronal migration in the adult mammalian brain. Science 264(5162):1145–1148 | es_ES |
dc.description.references | Ernst A, Alkass K, Bernard S, Salehpour M, Perl S, Tisdale J et al (2014) Neurogenesis in the striatum of the adult human brain. Cell 156(5):1072–1083 | es_ES |
dc.description.references | García-González D, Dumitru I, Zuccotti A, Yen TY, Herranz-Pérez V, Tan, LL, et al (2020) Neurogenesis of medium spiny neurons in the nucleus accumbens continues into adulthood and is enhanced by pathological pain. Mol Psychiatry 26(9):4616-4632 | es_ES |
dc.description.references | Sohn J, Orosco L, Guo F, Chung SH, Bannerman P, Ko EM et al (2015) The subventricular zone continues to generate corpus callosum and rostral migratory stream astroglia in normal adult mice. J Neurosci 35(9):3756–3763 | es_ES |
dc.description.references | Muñoz-Espín D, Serrano M (2014) Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol 15:482–496 | es_ES |
dc.description.references | Dimri GP, Campisi J (1994) Molecular and cell biology of replicative senescence. Cold Spring Harb Symp Quant Biol 59:67–73 | es_ES |
dc.description.references | Kurz DJ, Decary S, Hong Y, Erusalimsky JD (2000) Senescence-associated β-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. J Cell Sci 113(20):3613–3622 | es_ES |
dc.description.references | Becker RE, Greig NH, Giacobini E (2008) Why do so many drugs for Alzheimer’s disease fail in development? Time for new methods and new practices? J Alzheimers Dis 15:303–325 | es_ES |
dc.description.references | Tobin MK, Musaraca K, Disouky A, Shetti A, Bheri A, Honer WG et al (2019) Human hippocampal neurogenesis persists in aged adults and Alzheimer’s disease patients. Cell Stem Cell. 24(6):974-982e3 | es_ES |
dc.description.references | Haughey NJ, Nath A, Chan SL, Borchard AC, Rao MS, Mattson MP (2002) Disruption of neurogenesis by amyloid β-peptide, and perturbed neural progenitor cell homeostasis, in models of Alzheimer’s disease. J Neurochem 83(6):1509–1524 | es_ES |
dc.description.references | He P, Shen Y (2009) Interruption of β-catenin signaling reduces neurogenesis in Alzheimer’s disease. J Neurosci 29(20):6545–6557 | es_ES |
dc.description.references | Rodríguez JJ, Jones VC, Verkhratsky A (2009) Impaired cell proliferation in the subventricular zone in an Alzheimer’s disease model. NeuroReport 20(10):907–912 | es_ES |
dc.description.references | Tang J, Song M, Wang Y, Fan X, Xu H, Bai Y (2009) Noggin and BMP4 co-modulate adult hippocampal neurogenesis in the APPswe/PS1ΔE9 transgenic mouse model of Alzheimer’s disease. Biochem Biophys Res Commun 385(3):341–345 | es_ES |
dc.description.references | Moreno-Jiménez EP, Flor-García M, Terreros-Roncal J, Rábano A, Cafini F, Pallas-Bazarra N et al (2019) Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer’s disease. Nat Med 25(4):554–560 | es_ES |
dc.description.references | Sorrells SF, Paredes MF, Cebrian-Silla A, Sandoval K, Qi D, Kelley KW et al (2018) Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature 555(7696):377–381 | es_ES |
dc.description.references | Teplow DB (2006) Preparation of amyloid β-protein for structural and functional studies. Methods Enzymol 413:20–33 | es_ES |
dc.description.references | ElAli A, Thériault P, Préfontaine P, Rivest S (2013) Mild chronic cerebral hypoperfusion induces neurovascular dysfunction, triggering peripheral beta-amyloid brain entry and aggregation. Acta Neuropathol Commun 1(1):75 | es_ES |
dc.description.references | Faucher P, Mons N, Micheau J, Louis C, Beracochea DJ (2016) Hippocampal injections of oligomeric amyloid β-peptide (1–42) induce selective working memory deficits and long-lasting alterations of ERK signaling pathway. Aging Neurosci 7:1–15 | es_ES |
dc.description.references | Harkany T, Ábrahám I, Timmerman W, Laskay G, Tóth B, Sasvári M et al (2000) β-Amyloid neurotoxicity is mediated by a glutamate-triggered excitotoxic cascade in rat nucleus basalis. Eur J Neurosci 12(8):2735–2745 | es_ES |
dc.description.references | Prediger RDS, Franco JL, Pandolfo P, Medeiros R, Duarte FS, Di Giunta G et al (2007) Differential susceptibility following β-amyloid peptide-(1–40) administration in C57BL/6 and Swiss albino mice: evidence for a dissociation between cognitive deficits and the glutathione system response. Behav Brain Res 177(2):205–213 | es_ES |
dc.description.references | Guo H, Aleyasin H, Howard SS, Dickinson BC, Lin VS, Haskew-Layton RE et al (2013) Two-photon fluorescence imaging of intracellular hydrogen peroxide with chemoselective fluorescent probes. J Biomed Opt 18(10):106002 | es_ES |
dc.description.references | Moser B, Hochreiter B, Herbst R, Schmid JA (2017) Fluorescence colocalization microscopy analysis can be improved by combining object-recognition with pixel-intensity-correlation. Biotechnol J. 12(1): 1600332 | es_ES |
dc.description.references | Wesson DW, Levy E, Nixon RA, Wilson DA (2010) Olfactory dysfunction correlates with amyloid-beta burden in an Alzheimer’s disease mouse model. J Neurosci 30:505–514 | es_ES |
dc.description.references | Sundberg H, Doving K, Novikov S, Ursin H (1982) A method for studying responses and habituation to odors in rats. Behav Neural Biol 34:113–119 | es_ES |
dc.description.references | Burma S, Chen BP, Murphy M, Kurimasa A, Chen DJ (2001) ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J Biol Chem 276(45):42462–42467 | es_ES |
dc.description.references | Kieroń M, Żekanowski C, Falk A, Wężyk M (2019) Oxidative DNA damage signalling in neural stem cells in Alzheimer’s disease. Oxid Med Cell Longev 2019:2149812 | es_ES |
dc.description.references | Sedelnikova OA, Pilch DR, Redon C, Bonner WM (2003) Histone H2AX in DNA damage and repair. Cancer Biol Ther 2:233–235 | es_ES |
dc.description.references | Myung NH, Zhu X, Kruman II, Castellani RJ, Petersen RB, Siedlak SL et al (2008) Evidence of DNA damage in Alzheimer disease: phosphorylation of histone H2AX in astrocytes. Age 30(4):209–215 | es_ES |
dc.description.references | Lloret A, Badía MC, Mora NJ, Ortega A, Pallardó FV, Alonso MD et al (2008) Gender and age-dependent differences in the mitochondrial apoptogenic pathway in Alzheimer’s disease. Free Radic Biol Med 44(12):2019–2025 | es_ES |
dc.description.references | He ZY, Wang WY, Hu WY, Yang L, Li Y, Zhang WY et al (2016) Gamma-H2AX upregulation caused by Wip1 deficiency increases depression-related cellular senescence in hippocampus. Sci Rep 6:34558 | es_ES |
dc.description.references | Hovest MG, Brüggenolte N, Hosseini KS, Krieg T (2006) Herrmann, G Senescence of human fibroblasts after psoralen photoactivation is mediated by ATR kinase and persistent DNA damage foci at telomeres. Mol Biol Cell 17(4):1758–1767 | es_ES |
dc.description.references | Pospelova TV, Demidenko ZN, Bukreeva EI, Pospelov VA, Gudkov AV (2009) Blagosklonny MV Pseudo-DNA damage response in senescent cells. Cell Cycle 8:4112–4118 | es_ES |
dc.description.references | Lim DA, Alvarez-buylla A (2016) The adult ventricular – subventricular zone. Cold Spring Harb Perspect Biol 8(5):a018820 | es_ES |
dc.description.references | Scopa C, Marrocco F, Latina V, Ruggeri F, Corvaglia V, La Regina F et al (2020) Impaired adult neurogenesis is an early event in Alzheimer’s disease neurodegeneration, mediated by intracellular Aβ oligomers. Cell Death Differ 27(3):934–948 | es_ES |
dc.description.references | da Cunha BR, Domingos C, Buzzo Stefanini AC, Henrique T, Polachini GM, Castelo-Branco P, Tajara EH (2019) Cellular interactions in the tumor microenvironment: the role of secretome. J Cancer 10:4574–4587 | es_ES |
dc.description.references | Rodier F, Campisi J (2011) Four faces of cellular senescence. J Cell Biol 192:547–556 | es_ES |
dc.description.references | Wilkinson HN, Hardman MJ (2020) Senescence in wound repair: emerging strategies to target chronic healing wounds. Front Cell Dev Biol 8:773 | es_ES |
dc.description.references | Kojima T, Hirota Y, Ema M, Takahashi S, Miyoshi I, Okano H, Sawamoto K (2010) Subventricular zone-derived neural progenitor cells migrate along a blood vessel scaffold toward the post-stroke striatum. Stem Cells. 28(3): 545-554 | es_ES |
dc.description.references | de Boer HR, Guerrero Llobet S, van Vugt MA (2016) Controlling the response to DNA damage by the APC/C-Cdh1. Cell Mol Life Sci 73(5):949–960 | es_ES |
dc.description.references | Ha K, Ma C, Lin H, Tang L, Lian Z, Zhao F et al (2017) The anaphase promoting complex impacts repair choice by protecting ubiquitin signalling at DNA damage sites. Nat Commun 8(1):15751 | es_ES |
dc.description.references | Lara-Gonzalez P, Kim T, Desai A (2017) Taming the beast: control of APC/CCdc20-dependent destruction. Cold Spring Harb Symp Quant Biol 82:111–121 | es_ES |
dc.description.references | Takahashi A, Imai Y, Yamakoshi K, Kuninaka S, Ohtani N, Yoshimoto S et al (2012) DNA damage signaling triggers degradation of histone methyltransferases through APC/C Cdh1 in senescent cells. Mol Cell 45(1):123–131 | es_ES |
dc.description.references | Feringa FM, Krenning L, Koch A, Van Den Berg J, Van Den Broek B, Jalink K, Medema RH (2016) Hypersensitivity to DNA damage in antephase as a safeguard for genome stability. Nat Commun 7:12618 | es_ES |
dc.description.references | Zhang J, Li H, Zhou T, Zhou J, Herrup K (2012) Cdk5 levels oscillate during the neuronal cell cycle: Cdh1 ubiquitination triggers proteosome-dependent degradation during S-phase. J Biol Chem 287(31):25985–25994 | es_ES |
dc.description.references | Almeida A, Bolaños JP, Moreno S (2005) Cdh1/Hct1-APC is essential for the survival of postmitotic neurons. J Neurosci 25(36):8115–8121 | es_ES |
dc.description.references | Maestre C, Delgado-Esteban M, Gomez-Sanchez JC, Bolaños JP, Almeida A (2008) Cdk5 phosphorylates Cdh1 and modulates cyclin B1 stability in excitotoxicity. EMBO J 27(20):2736–2745 | es_ES |
dc.description.references | Ayala R, Shu T, Tsai L-H (2007) Trekking across the brain: the journey of neuronal migration. Cell 128(1):29–43 | es_ES |
dc.description.references | Schneider L, Pellegatta S, Favaro R, Pisati F, Roncaglia P, Testa G et al (2013) DNA damage in mammalian neural stem cells leads to astrocytic differentiation mediated by BMP2 signaling through JAK-STAT. Stem Cell Rep 1(2):123–138 | es_ES |
dc.description.references | Schneider L (2014) Survival of neural stem cells undergoing dna damage-induced astrocytic differentiation in self-renewal-promoting conditions in vitro. PLoS ONE 9(1):e87228 | es_ES |
dc.description.references | Zhan JS, Gao K, Chai RC, Jia XH, Luo DP, Ge G et al (2017) Astrocytes in migration. Neurochem Res 42(1):272–282 | es_ES |
dc.description.references | Devanand DP, Michaels-Marston KS, Liu X, Pelton GH, Padilla M, Marder K et al (2000) Olfactory deficits in patients with mild cognitive impairment predict Alzheimer’s disease at follow-up. Am J Psychiatry 157(9):1399–1405 | es_ES |
dc.description.references | Velayudhan L, Pritchard M, Powell JF, Proitsi P, Lovestone S (2013) Smell identification function as a severity and progression marker in Alzheimer’s disease. Int Psychogeriatr 25(7):1157–1166 | es_ES |
dc.description.references | Yu Q, Guo P, Li D, Zuo L, Lian T, Yu S et al (2018) Olfactory dysfunction and its relationship with clinical symptoms of Alzheimer disease. Aging Dis 9(6):1084–1095 | es_ES |
dc.description.references | Wang C, Liu F, Liu Y-Y, Zhao C-H, You Y, Wang L et al (2011) Identification and characterization of neuroblasts in the subventricular zone and rostral migratory stream of the adult human brain. Cell Res 21(11):1534–1550 | es_ES |
dc.description.references | Ardekani BA, Bachman AH, Figarsky K, Sidtis JJ (2014) Corpus callosum shape changes in early Alzheimer’s disease: an MRI study using the OASIS brain database. Brain Struct Funct 219(1):343–352 | es_ES |
dc.description.references | Benedicte M, Garcia-Verdugo JM, Yaschine C, Gonzalez-Perez O, Rowitch D, Alvarez-Buylla A (2006) Origin of oligodendrocytes in the subventricular zone of the adult brain. J Neurosci 26:7907–7918 | es_ES |
dc.description.references | Mizrak D, Levitin HM, Delgado AC, Crotet V, Yuan J, Chaker Z et al (2019) Single-cell analysis of regional differences in adult V-SVZ neural stem cell lineages. Cell Rep 26(2):394-406e5 | es_ES |
dc.description.references | Selden N, Mesulam MM, Geula C (1994) Human striatum: the distribution of neurofibrillary tangles in Alzheimer’s disease. Brain Res 648(2):327–331 | es_ES |
dc.description.references | Pulakat L, Chen HH (2020) Pro-senescence and anti-senescence mechanisms of cardiovascular aging: cardiac MicroRNA regulation of longevity drug-induced autophagy. Front Pharmacol 11:774 | es_ES |
dc.description.references | Rodríguez-Matellán A, Alcazar N, Hernández F, Serrano M, Ávila J (2020) In vivo reprogramming ameliorates aging features in dentate gyrus cells and improves memory in mice. Stem Cell Rep 15(5):1056–1066 | es_ES |
dc.description.references | Zhang P, Kishimoto Y, Grammatikakis I, Gottimukkala K, Cutler RG, Zhang S et al (2019) Senolytic therapy alleviates Aβ-associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer’s disease model. Nat Neurosci 22(5):719–728 | es_ES |