Mostrar el registro sencillo del ítem
dc.contributor.author | Sowinski, Tomasz | es_ES |
dc.contributor.author | Garcia March, Miguel Angel | es_ES |
dc.date.accessioned | 2023-07-27T18:01:24Z | |
dc.date.available | 2023-07-27T18:01:24Z | |
dc.date.issued | 2022-08-08 | es_ES |
dc.identifier.issn | 0556-2813 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/195661 | |
dc.description.abstract | [EN] In this work, we show that the eigenvalue continuation approach introduced recently by Frame et al. [Phys. Rev. Lett. 121, 032501 (2018)], despite its many advantages, has some fundamental limitations which cannot be overcome when strongly correlated many-body systems are considered. Taking as a working example a very simple system of several fermionic particles confined in a harmonic trap we show that the eigenvector continuation is not able to go beyond the accuracy of the sampling states. We support this observation within a very simple three-level model capturing directly this obstacle. Since mentioned inaccuracy cannot be determined self-consistently within the eigenvalue continuation approach, support from other complementary methods is needed. | es_ES |
dc.description.sponsorship | T.S. acknowledges fruitful discussions and hos-pitality at the UPV in Valencia. This work was supported by (Polish) National Science Centre Grant No. 2016/22/E/ST2/00555 (T.S.) . M.A.G.-M. ac-knowledges funding from the Spanish Ministry of Education and Vocational Training (MEFP) through the Beatriz Galindo program 2018 (BEAGAL18/00203) and Spanish Ministry MINECO (FIDEUA PID2019-106901GBI00/10.13039/501100011033) . We thank Pablo Giuliani, Edgard Bonilla, and Kyle Godbey for useful comments on our work and bringing to our attention the connection to generalized reduced basis methods. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | American Physical Society | es_ES |
dc.relation.ispartof | Physical Review C | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Eigenvalue continuation method | es_ES |
dc.title | Fundamental limitations of the eigenvalue continuation approach | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1103/PhysRevC.106.024002 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-106901GB-I00/ES/PHYSICS OF NEW CHALLENGES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NCN//2016%2F22%2FE%2FST2%2F00555/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Sowinski, T.; Garcia March, MA. (2022). Fundamental limitations of the eigenvalue continuation approach. Physical Review C. 106(2):024002-1-024002-4. https://doi.org/10.1103/PhysRevC.106.024002 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1103/PhysRevC.106.024002 | es_ES |
dc.description.upvformatpinicio | 024002-1 | es_ES |
dc.description.upvformatpfin | 024002-4 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 106 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.pasarela | S\476304 | es_ES |
dc.contributor.funder | National Science Centre, Polonia | es_ES |
dc.contributor.funder | MINISTERIO DE CIENCIA E INNOVACION | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |