Mostrar el registro sencillo del ítem
dc.contributor.author | Mehrbakhsh, Behzad | es_ES |
dc.contributor.author | Martínez-Plumed, Fernando | es_ES |
dc.contributor.author | Hernández-Orallo, José | es_ES |
dc.date.accessioned | 2023-07-28T09:55:05Z | |
dc.date.available | 2023-07-28T09:55:05Z | |
dc.date.issued | 2023-07-28T09:55:05Z | |
dc.identifier.uri | http://hdl.handle.net/10251/195689 | |
dc.description.abstract | Adversarial benchmark construction, where harder instances challenge new generations of AI systems, is becoming the norm. While this approach may lead to better machine learning models ---on average and for the new \mbox{benchmark---,} it is unclear how these models behave on the original distribution. Two opposing effects are intertwined here. On the one hand, the adversarial benchmark has a higher proportion of difficult instances, with lower expected performance. On the other hand, models trained on the adversarial benchmark may improve on these difficult instances (but may also neglect some easy ones). To disentangle these two effects we can control for difficulty, showing that we can recover the performance on the original distribution, provided the harder instances were obtained from this distribution in the first place. We show this difficulty-aware rectification works in practice, through a series of experiments with several benchmark construction schemas and the use of a populational difficulty metric. As a take-away message, instead of distributional averages we recommend using difficulty-conditioned characteristic curves when evaluating models built with adversarial benchmarks. | es_ES |
dc.description.sponsorship | We thank the anonymous reviewers for their comments. This work was funded by valgrAI, the Norwegian Research Council grant 329745 Machine Teaching for Explainable AI, the Future of Life Institute, FLI, under grant RFP2-152, the EU (FEDER) and Spanish grant RTI2018-094403-B-C32 funded by MCIN/AEI/10.13039/501100011033 and by CIPROM/2022/6 funded by Generalitat Valenciana, EU’s Horizon 2020 research and innovation programme under grant agreement No. 952215 (TAILOR), US DARPA HR00112120007 (RECoG-AI) and Spanish grant PID2021-122830OB-C42 (SFERA) funded by MCIN/AEI/10.13039/501100011033 and "ERDF A way of making Europe" In compliance with the recommendations of the Science paper about reporting of evaluation results in AI [3], we include all the results at the instance level | es_ES |
dc.language | Inglés | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Class difficulty | es_ES |
dc.subject | Adversarial robustness | es_ES |
dc.subject | Artificial Intelligence (AI) | es_ES |
dc.subject | Adversarial Benchmark | es_ES |
dc.subject | AI Evaluation | es_ES |
dc.title | Further Details on Examining Adversarial Evaluation: Role of Difficulty | es_ES |
dc.type | Otros | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//CIPROM%2F2022%2F006/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//PID2021-122830OB-C42//MÉTODOS FORMALES ESCALABLES PARA APLICACIONES REALES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094403-B-C32/ES/RAZONAMIENTO FORMAL PARA TECNOLOGIAS FACILITADORAS Y EMERGENTES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Valenciano de Investigación en Inteligencia Artificial - Institut Universitari Valencià de Recerca en Intel·ligència Artificial | es_ES |
dc.contributor.affiliation | Valencian Graduate School and Research Network of Artificial Intelligence (ValgrAI) | es_ES |
dc.description.bibliographicCitation | Mehrbakhsh, B.; Martínez-Plumed, F.; Hernández-Orallo, J. (2023). Further Details on Examining Adversarial Evaluation: Role of Difficulty. http://hdl.handle.net/10251/195689 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |