Mostrar el registro sencillo del ítem
dc.contributor.author | Yu, Linqui | es_ES |
dc.contributor.author | Yousif, Mustafa Z. | es_ES |
dc.contributor.author | Zhang, Meng | es_ES |
dc.contributor.author | Hoyas, S | es_ES |
dc.contributor.author | Vinuesa, Ricardo | es_ES |
dc.contributor.author | Lim, Hee-Chang | es_ES |
dc.date.accessioned | 2023-07-28T18:02:39Z | |
dc.date.available | 2023-07-28T18:02:39Z | |
dc.date.issued | 2022-12 | es_ES |
dc.identifier.issn | 1070-6631 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/195698 | |
dc.description.abstract | [EN] Turbulence is a complicated phenomenon because of its chaotic behavior with multiple spatiotemporal scales. Turbulence also has irregularity and diffusivity, making predicting and reconstructing turbulence more challenging. This study proposes a deep-learning approach to reconstruct three-dimensional (3D) high-resolution turbulent flows from spatially limited data using a 3D enhanced super-resolution generative adversarial networks (3D-ESRGAN). In addition, a novel transfer-learning method based on tricubic interpolation is employed. Turbulent channel flow data at friction Reynolds numbers R e tau = 180 and R e tau = 500 were generated by direct numerical simulation (DNS) and used to estimate the performance of the deep-learning model as well as that of tricubic interpolation-based transfer learning. The results, including instantaneous velocity fields and turbulence statistics, show that the reconstructed high-resolution data agree well with the reference DNS data. The findings also indicate that the proposed 3D-ESRGAN can reconstruct 3D high-resolution turbulent flows even with limited training data. | es_ES |
dc.description.sponsorship | This work was supported by "Human Resources Program in Energy Technology" of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea (No. 20214000000140). In addition, this work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2019R1I1A3A01058576). This work was also supported by the National Supercomputing Center with supercomputing resources including technical support (No. KSC-2022-CRE-0282). R.V. acknowledges the financial support from the ERC Grant No. 2021-CoG-101043998, DEEPCONTROL. S.H. was funded by Contract No. PID2021-128676OB-I00 of Ministerio de Ciencia, innovacion y Universidades/FEDER. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | American Institute of Physics | es_ES |
dc.relation.ispartof | Physics of Fluids | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject.classification | INGENIERIA AEROESPACIAL | es_ES |
dc.title | Three-dimensional ESRGAN for super-resolution reconstruction of turbulent flows with tricubic interpolation-based transfer learning | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1063/5.0129203 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//PID2021-128676OB-I00//REVELANDO LA TURBULENCIA DE PARED/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ERC//2021-CoG-101043998/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/KETEP//20214000000140/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NRF//2019R1I1A3A01058576/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/KSC//KSC-2022-CRE-0282/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny | es_ES |
dc.description.bibliographicCitation | Yu, L.; Yousif, MZ.; Zhang, M.; Hoyas, S.; Vinuesa, R.; Lim, H. (2022). Three-dimensional ESRGAN for super-resolution reconstruction of turbulent flows with tricubic interpolation-based transfer learning. Physics of Fluids. 34(12):125126-1-125126-14. https://doi.org/10.1063/5.0129203 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1063/5.0129203 | es_ES |
dc.description.upvformatpinicio | 125126-1 | es_ES |
dc.description.upvformatpfin | 125126-14 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 34 | es_ES |
dc.description.issue | 12 | es_ES |
dc.relation.pasarela | S\481311 | es_ES |
dc.contributor.funder | European Research Council | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | National Research Foundation of Korea | es_ES |
dc.contributor.funder | Korea Institute of Energy Technology Evaluation and Planning | es_ES |
dc.contributor.funder | National Supercomputing Center, Korea Institute of Science and Technology Information | es_ES |
dc.subject.ods | 07.- Asegurar el acceso a energías asequibles, fiables, sostenibles y modernas para todos | es_ES |