- -

How Does the Modeling Strategy Influence Design Optimization and the Automatic Generation of Parametric Geometry Variations?

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

How Does the Modeling Strategy Influence Design Optimization and the Automatic Generation of Parametric Geometry Variations?

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Aranburu, Aritz es_ES
dc.contributor.author Cotillas, Josu es_ES
dc.contributor.author Justel, Daniel es_ES
dc.contributor.author Contero, Manuel es_ES
dc.contributor.author Camba, Jorge D. es_ES
dc.date.accessioned 2023-07-28T18:02:50Z
dc.date.available 2023-07-28T18:02:50Z
dc.date.issued 2022-10 es_ES
dc.identifier.issn 0010-4485 es_ES
dc.identifier.uri http://hdl.handle.net/10251/195703
dc.description.abstract [EN] The robustness and flexibility of a feature-based parametric CAD model determines the extent to which the geometry can be modified and reused in other design scenarios. The ability of a model to successfully adapt to changes depends on the type and sequence of the modeling operations selected to build the geometry, the parent-child dependencies defined during the modeling process, and the type and scope of the desired geometric change. Several formal modeling methodologies have been proposed to maximize model reusability, which have been shown to outperform unstructured approaches when designers need to manually modify the geometry. However, the effect of these parametric model strategies on the generation of valid solutions in heavily automated tasks has not yet been investigated. In this paper, we compare and analyze the performance of three wellestablished parametric modeling methodologies in various design optimization scenarios that involve the automatic generation of a large number of geometric variations. We discuss the results of a study with four parametric models of varying complexity and identify the limitations of each strategy in relation to the internal structure of the model. Our results show that explicit references and resilient modeling strategies are relatively robust for simple parts, but their effectiveness decreases significantly as the complexity of the model increases. In addition, we introduce the concept of intrinsic variability, which impacts the effectiveness of the methodology, and thus the quality of the parametric model, based on how the methodology is interpreted and executed. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Computer-Aided Design es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject CAD reusability es_ES
dc.subject Parametric modeling methodologies es_ES
dc.subject Design intent es_ES
dc.subject CAD quality es_ES
dc.subject.classification EXPRESION GRAFICA EN LA INGENIERIA es_ES
dc.title How Does the Modeling Strategy Influence Design Optimization and the Automatic Generation of Parametric Geometry Variations? es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.cad.2022.103364 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.description.bibliographicCitation Aranburu, A.; Cotillas, J.; Justel, D.; Contero, M.; Camba, JD. (2022). How Does the Modeling Strategy Influence Design Optimization and the Automatic Generation of Parametric Geometry Variations?. Computer-Aided Design. 151:1-13. https://doi.org/10.1016/j.cad.2022.103364 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.cad.2022.103364 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 151 es_ES
dc.relation.pasarela S\488937 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem