- -

Leveraging execution traces to enhance traceability links recovery in BPMN models

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Leveraging execution traces to enhance traceability links recovery in BPMN models

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Lapeña, Raúl es_ES
dc.contributor.author Pérez, Francisca es_ES
dc.contributor.author Pastor López, Oscar es_ES
dc.contributor.author Cetina, Carlos es_ES
dc.date.accessioned 2023-08-28T18:00:29Z
dc.date.available 2023-08-28T18:00:29Z
dc.date.issued 2022-06 es_ES
dc.identifier.issn 0950-5849 es_ES
dc.identifier.uri http://hdl.handle.net/10251/195750
dc.description.abstract [EN] Context: Traceability Links Recovery has been a topic of interest for many years, resulting in techniques that perform traceability based on the linguistic clues of the software artifacts under study. However, BPMN models tend to present an overall lack of linguistic clues when compared to code-based artifacts or code generation models. Hence, TLR becomes a harder task when performed among requirements and BPMN models.Objective: This paper proposes a novel approach, called METRA, that leverages the execution traces of BPMN to expand the BPMN models. The expansion of the BPMN models enhances their linguistic clues, bridging the language between BPMN models and other software artifacts, and improving the TLR process between requirements and BPMN models.Methods: The proposed approach is evaluated through a real-world industrial case study, comparing its outcomes against two state-of-the-art baselines, TLR and LORE. The paper also evaluates the combination of METRA with LORE against the rest of the approaches, including standalone METRA. The evaluation process generates a report of measurements (precision, recall, f-measure, and MCC), over which a statistical analysis is conducted.Results: Results show that approaches based on METRA maintain the excellent precision results obtained by baseline approaches (74.2% for METRA, 78.8% for METRA+LORE), whilst also improving the recall results from the unacceptable values obtained by the baselines to good values (72.4% for METRA, 73.9% for METRA+LORE). Moreover, according to the statistical analysis, the differences in the results obtained by the evaluated approaches are statistically significant. Conclusions: This paper opens a novel field of work in TLR by analyzing the improvement of the TLR process through the inclusion of linguistic clues present in execution traces, and discusses ideas for further research that can delve into this promising direction explored by our work. es_ES
dc.description.sponsorship This work has been partially supported by the Ministry of Economy and Competitiveness (MINECO) through the Spanish National R+D+i Plan and ERDF funds under the project ALPS (RTI2018-096411-B-I00) and in part by the Gobierno de Aragon (Spain) (Research Group S05_20D) . es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Information and Software Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Traceability links recovery es_ES
dc.subject BPMN models es_ES
dc.subject Model-driven engineering es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Leveraging execution traces to enhance traceability links recovery in BPMN models es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.infsof.2022.106873 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-096411-B-I00/ES/ASISTENTES EVOLUTIVOS INTELIGENTES PARA INICIAR LINEAS DE PRODUCTO SOFTWARE/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.description.bibliographicCitation Lapeña, R.; Pérez, F.; Pastor López, O.; Cetina, C. (2022). Leveraging execution traces to enhance traceability links recovery in BPMN models. Information and Software Technology. 146:1-14. https://doi.org/10.1016/j.infsof.2022.106873 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.infsof.2022.106873 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 14 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 146 es_ES
dc.relation.pasarela S\491535 es_ES
dc.contributor.funder Gobierno de Aragón es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem