Agarap AF (2018) Deep learning using rectified linear units (ReLU). arXiv:1803.08375
Alam F, Cresci S, Chakraborty T, et al (2021) A survey on multimodal disinformation detection. arXiv:2103.12541
Cai Y, Cai H, Wan X (2019) Multi-modal sarcasm detection in Twitter with hierarchical fusion model. In: Proceedings of the 57th annual meeting of the ACL. Association for Computational Linguistics, pp 2506–2515. https://doi.org/10.18653/v1/P19-1239
[+]
Agarap AF (2018) Deep learning using rectified linear units (ReLU). arXiv:1803.08375
Alam F, Cresci S, Chakraborty T, et al (2021) A survey on multimodal disinformation detection. arXiv:2103.12541
Cai Y, Cai H, Wan X (2019) Multi-modal sarcasm detection in Twitter with hierarchical fusion model. In: Proceedings of the 57th annual meeting of the ACL. Association for Computational Linguistics, pp 2506–2515. https://doi.org/10.18653/v1/P19-1239
Cignarella AT, Basile V, Sanguinetti M, et al (2020a) Multilingual irony detection with dependency syntax and neural models. In: Proceedings of the 28th international conference on computational linguistics. International Committee on Computational Linguistics, Barcelona, Spain (Online), pp 1346–1358. https://doi.org/10.18653/v1/2020.coling-main.116
Cignarella AT, Sanguinetti M, Bosco C, et al (2020b) Marking irony activators in a Universal Dependencies treebank: the case of an Italian Twitter corpus. In: Proceedings of the 12th language resources and evaluation conference. European Language Resources Association, Marseille, France, pp 5098–5105. https://aclanthology.org/2020.lrec-1.627
Conneau A, Khandelwal K, Goyal N, et al (2020) Unsupervised cross-lingual representation learning at scale. In: Proceedings of the 58th annual meeting of the association for computational linguistics. Association for Computational Linguistics, Online, pp 8440–8451. https://doi.org/10.18653/v1/2020.acl-main.747
Devlin J, Chang MW, Lee K, et al (2019) Bert: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 conference of the north American chapter of the association for computational linguistics. Association for Computational Linguistics, pp 4171–4186. https://doi.org/10.18653/v1/N19-1423
Dosovitskiy A, Beyer L, Kolesnikov A, et al (2021) An image is worth 16x16 words: transformers for image recognition at scale. In: International conference on learning representations, pp 1–21. https://openreview.net/forum?id=YicbFdNTTy
Gadzicki K, Khamsehashari R, Zetzsche C (2020) Early vs late fusion in multimodal convolutional neural networks. In: 2020 IEEE 23rd international conference on information fusion (FUSION), pp 1–6. https://doi.org/10.23919/FUSION45008.2020.9190246
Giachanou A, Zhang G, Rosso P (2020) Multimodal fake news detection with textual, visual and semantic information. Text, speech, and dialogue. Springer, Cham, pp 30–38
Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT press, Oxford
He P, Liu X, Gao J, et al (2020) Deberta: decoding-enhanced BERT with disentangled attention. arXiv:2006.03654
Howard J, Ruder S (2018) Universal language model fine-tuning for text classification. In: Proceedings of the 56th annual meeting of the ACL. Association for Computational Linguistics, pp 328–339. https://doi.org/10.18653/v1/P18-1031
Hutto C, Gilbert E (2014) Vader: a parsimonious rule-based model for sentiment analysis of social media text. Proc Int AAAI Conf Web Soc Media 8(1):216–225
Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning, PMLR, pp 448–456
Joshi A, Bhattacharyya P, Carman MJ (2017) Automatic sarcasm detection: a survey. ACM Comput Surv 50(5):1–22. https://doi.org/10.1145/3124420
Kiela D, Firooz H, Mohan A, et al (2021) The hateful memes challenge: competition report. In: Escalante HJ, Hofmann K (eds) Proceedings of the NeurIPS 2020 competition and demonstration track, proceedings of machine learning research, vol 133. PMLR, pp 344–360
Li LH, Yatskar M, Yin D, et al (2019) Visualbert: a simple and performant baseline for vision and language. arXiv:1908.03557
Liu Y, Ott M, Goyal N, et al (2019) Roberta: a robustly optimized bert pretraining approach, pp 1–13. arXiv preprint arXiv:1907.11692
Maas AL, Hannun AY, Ng AY (2013) Rectifier nonlinearities improve neural network acoustic models. In: Proceedings of the ICML workshop on deep learning for audio, speech and language processing, Atlanta, Georgia, USA, pp 1–6
Mikolov T, Sutskever I, Chen K, et al (2013) Distributed representations of words and phrases and their compositionality. In: Proceedings of the 26th international conference on neural information processing systems, vol 2. Curran Associates Inc., NIPS’13, pp 3111–3119
Naseer M, Ranasinghe K, Khan S, et al (2021) Intriguing properties of vision transformers. arXiv:2105.10497
Nguyen DQ, Vu T, Tuan Nguyen A (2020) BERTweet: a pre-trained language model for English tweets. In: Proceedings of the 2020 conference on empirical methods in natural language processing: system demonstrations. Association for Computational Linguistics, Online, pp 9–14. https://doi.org/10.18653/v1/2020.emnlp-demos.2, https://aclanthology.org/2020.emnlp-demos.2
Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987. https://doi.org/10.1109/TPAMI.2002.1017623
Pan H, Lin Z, Fu P, et al (2020) Modeling intra and inter-modality incongruity for multi-modal sarcasm detection. In: Findings of the association for computational linguistics: EMNLP 2020. Association for Computational Linguistics, pp 1383–1392. https://doi.org/10.18653/v1/2020.findings-emnlp.124
Schifanella R, de Juan P, Tetreault J, et al (2016) Detecting sarcasm in multimodal social platforms. In: Proceedings of the 24th ACM international conference on multimedia. Association for Computing Machinery, New York, NY, USA, MM ’16, pp 1136–1145. https://doi.org/10.1145/2964284.2964321
Srivastava N, Hinton G, Krizhevsky A et al (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15(1):1929–1958
Tan H, Bansal M (2019) LXMERT: learning cross-modality encoder representations from transformers. In: Proceedings of the 2019 conference on empirical methods in natural language processing and the 9th international joint conference on natural language processing (EMNLP-IJCNLP). Association for Computational Linguistics, pp 5100–5111. https://doi.org/10.18653/v1/D19-1514
Van Hee C, Lefever E, Hoste V (2018) SemEval-2018 task 3: irony detection in English tweets. In: Proceedings of The 12th international workshop on semantic evaluation. Association for Computational Linguistics, New Orleans, Louisiana, pp 39–50. https://doi.org/10.18653/v1/S18-1005, https://aclanthology.org/S18-1005
Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. In: Advances in neural information processing systems, vol 30. Curran Associates, Inc., pp 5998–6008
Wang X, Sun X, Yang T, et al (2020) Building a bridge: a method for image-text sarcasm detection without pretraining on image-text data. In: Proceedings of the first international workshop on natural language processing beyond text. Association for Computational Linguistics, pp 19–29. https://doi.org/10.18653/v1/2020.nlpbt-1.3
Xu N, Zeng Z, Mao W (2020) Reasoning with multimodal sarcastic tweets via modeling cross-modality contrast and semantic association. In: Proceedings of the 58th annual meeting of the association for computational linguistics. Association for Computational Linguistics, pp 3777–3786. https://doi.org/10.18653/v1/2020.acl-main.349
[-]