- -

Optimization of Fluid Bed Dryer Energy Consumption for Pharmaceutical Drug Processes through Machine Learning and Cloud Computing Technologies

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Optimization of Fluid Bed Dryer Energy Consumption for Pharmaceutical Drug Processes through Machine Learning and Cloud Computing Technologies

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.advisor Hassan Mohamed, Houcine es_ES
dc.contributor.author Barriga Rodríguez, Roberto es_ES
dc.date.accessioned 2023-09-04T11:31:38Z
dc.date.available 2023-09-04T11:31:38Z
dc.date.created 2023-07-10
dc.date.issued 2023-09-01 es_ES
dc.identifier.uri http://hdl.handle.net/10251/195847
dc.description.abstract [ES] Los altos costes energéticos, las constantes medidas regulatorias aplicadas por las administraciones para mantener bajos los costes sanitarios, así como los cambios en la normativa sanitaria que se han introducido en los últimos años, han tenido un impacto significativo en la industria farmacéutica y sanitaria. El paradigma Industria 4.0 engloba cambios en el modelo productivo tradicional de la industria farmacéutica con la inclusión de tecnologías que van más allá de la automatización tradicional. El objetivo principal es lograr medicamentos más rentables mediante la incorporación óptima de tecnologías como la analítica avanzada. El proceso de fabricación de las industrias farmacéuticas tiene diferentes etapas (mezclado, secado, compactado, recubrimiento, envasado, etc.) donde una de las etapas más costosas energéticamente es el proceso de secado. El objetivo durante este proceso es extraer el contenido de líquidos como el agua mediante la inyección de aire caliente y seco en el sistema. Este tiempo de secado normalmente está predeterminado y depende del volumen y el tipo de unidades de producto farmacéutico que se deben deshidratar. Por otro lado, la fase de precalentamiento puede variar dependiendo de varios parámetros como la experiencia del operador. Por lo tanto, es posible asumir que una optimización de este proceso a través de analítica avanzada es posible y puede tener un efecto significativo en la reducción de costes en todo el proceso de fabricación. Debido al alto coste de la maquinaria involucrada en el proceso de producción de medicamentos, es una práctica común en la industria farmacéutica tratar de maximizar la vida útil de estas máquinas que no están equipados con los últimos sensores. Así pues, es posible implementar un modelo de aprendizaje automático que utilice plataformas de analítica avanzada, como la computación en la nube, para analizar los posibles ahorros en el consumo de energía. Esta tesis está enfocada en mejorar el consumo de energía en el proceso de precalentamiento de un secador de lecho fluido, mediante la definición e implementación de una plataforma de computación en la nube IIOT (Industrial Internet of Things)-Cloud, para alojar y ejecutar un algoritmo de aprendizaje automático basado en el modelo Catboost, para predecir cuándo es el momento óptimo para detener el proceso y reducir su duración y, en consecuencia, su consumo energético. Los resultados experimentales muestran que es posible reducir el proceso de precalentamiento en un 45% de su duración en tiempo y, en consecuencia, reducir el consumo de energía hasta 2.8 MWh por año. es_ES
dc.description.abstract [CAT] Els elevats costos energètics, les constants mesures reguladores aplicades per les administracions per mantenir uns costos assistencials baixos, així com els canvis en la normativa sanitària que s'han introduït en els darrers anys, han tingut un impacte important en el sector farmacèutic i sanitari. El paradigma de la indústria 4.0 engloba els canvis en el model de producció tradicional de la indústria farmacèutica amb la inclusió de tecnologies que van més enllà de l'automatització tradicional. L'objectiu principal és aconseguir fàrmacs més rendibles mitjançant la incorporació òptima de tecnologies com l'analítica avançada. El procés de fabricació de les indústries farmacèutiques té diferents etapes (mescla, assecat, compactació, recobriment, envasat, etc.) on una de les etapes més costoses energèticament és el procés d'assecat. L'objectiu d'aquest procés és extreure el contingut de líquids com l'aigua injectant aire calent i sec al sistema. Aquest temps de procediment d'assecat normalment està predeterminat i depèn del volum i del tipus d'unitats de producte farmacèutic que cal deshidratar. D'altra banda, la fase de preescalfament pot variar en funció de diversos paràmetres com l'experiència de l'operador. Per tant, podem assumir que una optimització d'aquest procés mitjançant analítiques avançades és possible i pot tenir un efecte significatiu de reducció de costos en tot el procés de fabricació. A causa de l'elevat cost de la maquinària implicada en el procés de producció de fàrmacs, és una pràctica habitual a la indústria farmacèutica intentar maximitzar la vida útil d'aquestes màquines que no estan equipats amb els darrers sensors. Així, es pot implementar un model d'aprenentatge automàtic que utilitza plataformes de analítiques avançades com la computació en núvol, per analitzar l'estalvi potencial del consum d'energia. Aquesta tesis està enfocada a millorar el consum d'energia en el procés de preescalfament d'un assecador de llit fluid, mitjançant la definició i implementació d'una plataforma IIOT (Industrial Internet of Things)-Cloud computing, per allotjar i executar un algorisme d'aprenentatge automàtic basat en el modelatge Catboost, per predir quan és el moment òptim per aturar el procés i reduir-ne la durada, i en conseqüència el seu consum energètic. Els resultats de l'experiment mostren que és possible reduir el procés de preescalfament en un 45% de la seva durada en temps i, en conseqüència, reduir el consum d'energia fins a 2.8 MWh anuals. es_ES
dc.description.abstract [EN] High energy costs, the constant regulatory measures applied by administrations to maintain low healthcare costs, and the changes in healthcare regulations introduced in recent years have all significantly impacted the pharmaceutical and healthcare industry. The industry 4.0 paradigm encompasses changes in the traditional production model of the pharmaceutical industry with the inclusion of technologies beyond traditional automation. The primary goal is to achieve more cost-efficient drugs through the optimal incorporation of technologies such as advanced analytics. The manufacturing process of the pharmaceutical industry has different stages (mixing, drying, compacting, coating, packaging, etc..), and one of the most energy-expensive stages is the drying process. This process aims to extract the liquid content, such as water, by injecting warm and dry air into the system. This drying procedure time usually is predetermined and depends on the volume and the kind of units of a pharmaceutical product that must be dehydrated. On the other hand, the preheating phase can vary depending on various parameters, such as the operator's experience. It is, therefore, safe to assume that optimization of this process through advanced analytics is possible and can have a significant cost-reducing effect on the whole manufacturing process. Due to the high cost of the machinery involved in the drug production process, it is common practice in the pharmaceutical industry to try to maximize the useful life of these machines, which are not equipped with the latest sensors. Thus, a machine learning model using advanced analytics platforms, such as cloud computing, can be implemented to analyze potential energy consumption savings. This thesis is focused on improving the energy consumption in the preheating process of a fluid bed dryer by defining and implementing an IIOT (Industrial Internet of Things) Cloud computing platform. This architecture will host and run a machine learning algorithm based on Catboost modeling to predict when the optimum time is reached to stop the process, reduce its duration, and consequently its energy consumption. Experimental results show that it is possible to reduce the preheating process by 45% of its time duration, consequently reducing energy consumption by up to 2.8 MWh per year. es_ES
dc.format.extent 170 es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Consumo energético es_ES
dc.subject Algoritmos de aprendizaje automático es_ES
dc.subject Control predictivo es_ES
dc.subject Tecnología farmacéutica es_ES
dc.subject Computación en la nube es_ES
dc.subject Secador de lecho fluido es_ES
dc.subject Cloud computing es_ES
dc.subject Pharmaceutical technology es_ES
dc.subject Predictive control es_ES
dc.subject Machine learning algorithms es_ES
dc.subject Energy consumption es_ES
dc.subject Fluid bed dryer es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title Optimization of Fluid Bed Dryer Energy Consumption for Pharmaceutical Drug Processes through Machine Learning and Cloud Computing Technologies es_ES
dc.type Tesis doctoral es_ES
dc.identifier.doi 10.4995/Thesis/10251/195847 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.description.bibliographicCitation Barriga Rodríguez, R. (2023). Optimization of Fluid Bed Dryer Energy Consumption for Pharmaceutical Drug Processes through Machine Learning and Cloud Computing Technologies [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/195847 es_ES
dc.description.accrualMethod TESIS es_ES
dc.type.version info:eu-repo/semantics/acceptedVersion es_ES
dc.relation.pasarela TESIS\13336 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem