- -

Characterization of teak pruning waste as an energy resource

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Characterization of teak pruning waste as an energy resource

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Velázquez Martí, Borja es_ES
dc.contributor.author Pérez-Arévalo, Juan José es_ES
dc.date.accessioned 2023-09-08T18:00:51Z
dc.date.available 2023-09-08T18:00:51Z
dc.date.issued 2020-02 es_ES
dc.identifier.issn 0167-4366 es_ES
dc.identifier.uri http://hdl.handle.net/10251/196136
dc.description.abstract [EN] Pruning agroforestry areas generates significant amounts of lignocellulosic biomass every year. The energy production potential of this biomass is unclear. The aim of this research was to quantify the amount of pruning residues generated from Teak (Tectona grandis), which are composed by mixtures of wood and leaves. An equation from a regression model has been proposed to quantify these residues with a adjusted coefficient of determination (r(2)) of 0.73. On the other hand, mixtures with different wood/leaf ratios of Teak were characterized by its higher heating value (HHV), elemental composition, structural and proximate analysis. This analysis allowed for further development of indirect HHV prediction models that are economically attractive and less time consuming than direct measurements. These models presented high coefficients of determination (r(2) 0.66-0.77). It has been determined that teak has the highest mean HHV of 17,373.7 kJ kg(-1) dry. Elemental analysis showed the highest carbon content was about 46.2%. Mean hydrogen content was 7.5%. Leaf content has influenced on ash and nitrogen percentages. Nevertheless, the amount of nitrogen did not reach 1% for mixtures with leaf ratio lower than 50%. It is concluded that the proposed model can be used to predict the biomass of teak pruning grown in Aw climatic conditions. From the characterization of these pruned materials, the energy, residues and emissions can be estimated. es_ES
dc.description.sponsorship This work has been funded by Universidad Catolica Santiago de Guayaquil through a research program coordinated by the Sistema de Investigacion y Desarrollo (SINDE). es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Agroforestry Systems es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Agroforestry es_ES
dc.subject Pruning waste es_ES
dc.subject HHV es_ES
dc.subject Elemental composition es_ES
dc.subject Bioenergy es_ES
dc.subject.classification INGENIERIA AGROFORESTAL es_ES
dc.title Characterization of teak pruning waste as an energy resource es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10457-019-00387-3 es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural es_ES
dc.description.bibliographicCitation Velázquez Martí, B.; Pérez-Arévalo, JJ. (2020). Characterization of teak pruning waste as an energy resource. Agroforestry Systems. 94(1):241-250. https://doi.org/10.1007/s10457-019-00387-3 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s10457-019-00387-3 es_ES
dc.description.upvformatpinicio 241 es_ES
dc.description.upvformatpfin 250 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 94 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\386934 es_ES
dc.contributor.funder Universidad Católica de Santiago de Guayaquil es_ES
dc.description.references Acar S, Ayanoglu A (2012) Determination of higher heating values (HHVs) of biomass fuels. Energy Educ Sci Technol 28:749–758 es_ES
dc.description.references Beccali M, Columba P, D’Aleberti V (2009) Assessment of bioenergy potential in Sicily: a GIS-based support methodology. Biomass Bioenergy 33:79–87. https://doi.org/10.1016/j.biombioe.2008.04.019 es_ES
dc.description.references Bernetti I, Fagarazzi C, Fratini R (2004) A methodology to analyze the potential development of biomass energy sector: an application in Tuscany. For Policy Econ 6:415–432. https://doi.org/10.1016/j.forpol.2004.03.018 es_ES
dc.description.references Callejón-Ferre AJ, Carreño-Sánchez J, Suárez-Medina FJ, Pérez-Alonso J, Velázquez-Martí B (2014) Prediction models for higher heating value based on the structural analysis of the biomass of plant remains from the greenhouses of Almería (Spain). Fuel 116:377–387. https://doi.org/10.1016/j.fuel.2013.08.023 es_ES
dc.description.references Chaturvedi R, Raghubanshi AS (2015) Allometric models for accurate estimation of aboveground biomass of teak in tropical dry forests of India. For Sci 61(5):938–949. https://doi.org/10.5849/forsci.14-190 es_ES
dc.description.references Christoforou EA, Fokaides PA, Kyriakides I (2014) Monte Carlo parametric modeling for predicting biomass calorific value. J Therm Anal Calorim 118:1789–1796. https://doi.org/10.1007/s10973-014-4027-5 es_ES
dc.description.references Clutter J, Forston J, Pienaar L, Brister G, Bailey RL (1983) Timber management: a quantitative approach. Wiley, New York, ISBN-13: 978-0894647475 es_ES
dc.description.references Demirbaş A (2003) Relatioships between heating value and lignin, fixed carbon, and volatile material contents of shells from biomass products. Energy Sour 25:629–635. https://doi.org/10.1080/00908310390212336 es_ES
dc.description.references EN 14918:2008. Solid biofuels—determination of the calorific value. European Committee for Standardization es_ES
dc.description.references EN-ISO 18122:2015. Solid biofuels. Determination of ash content. European Committee for Standardization es_ES
dc.description.references EN-ISO 18123:2015. Solid biofuels. Determination of the content of volatile matter. European Committee for Standardization es_ES
dc.description.references FAO (1994) Directrices sobre la planificación del aprovechamiento de la tierra. Colección FAO: Desarrollo, FAO 1994, Roma, Italia. 96 pp es_ES
dc.description.references Gonzalez-Garcia S, Dias AC, Clermidy S, Benoist A, Maurel VB, Gasol AM, Gabarell X, Arroja L (2014) Comparative environmental and energy profiles of potential bioenergy production chains in Southern Europe. J Clean Prod 76:42–54 es_ES
dc.description.references Gu L, Wu S, Li B, Wen H, Zhang D, Ye J, Wang L (2017) Persulfate oxidation assisted hydrochar production from Platanus Orientalis leaves: physiochemical and combustion characteristics. Biores Technol 244:517–524. https://doi.org/10.1016/j.biortech.2017.07.173 es_ES
dc.description.references ISO-EN 18134-3:2017. Solid biofuels. Methods for moisture content determination. Method of oven drying. Part 3. Moisture of the sample for general analysis. European Committee for Standardization es_ES
dc.description.references Jones G, Joeffler D, Calkin D, Chung W (2010) Forest treatment residues for thermal energy compared with disposal by onsite burning: emissions and energy return. Biomass Bioenergy 34:737–746 es_ES
dc.description.references Karmacharya S, Singh KP (1992) Biomass and net production of teak plantations in a dry tropical region in India. For Ecol Manag 55(1–4):233–247. https://doi.org/10.1016/0378-1127(92)90103-G es_ES
dc.description.references Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World map of the Köppen–Geiger climate classification updated. Meteorol Z 15:259–263. https://doi.org/10.1127/0941-2948/2006/0130 es_ES
dc.description.references Manzone M, Balsari P, Spinelli R (2013) Small-scale storage techniques for fuel chips from short rotation forestry. Fuel 109:687–692. https://doi.org/10.1016/j.fuel.2013.03.006 es_ES
dc.description.references Minoche D, Herrero C, Dominguez-Dominguez M, Martinez-Zurimendi P (2017) Determining the site index of teak (Tectona grandis L.) plantations in Tabasco, Mexico. Cien Investig Agraria 44(2):154–167. https://doi.org/10.7764/rcia.v44i2.1645 es_ES
dc.description.references Oluoti K, Richards T, Doddapaneni TRK, Kanagasabapathi D (2014) Evaluation of the pyrolysis and gasification kinetics of tropical wood biomass. BioResources 9(2):2179–2190 es_ES
dc.description.references Partey ST, Oliver BF, Kwaku MY, Sarfo DA (2017) Comparative life cycle analysis of producing charcoal from bamboo, teak, and acacia species in Ghana. Int J Life Cycle Assess 22(5):758–766. https://doi.org/10.1007/s11367-016-1220-8 es_ES
dc.description.references Pérez-Arévalo JJ, Velázquez-Martí B (2018) Evaluation of pruning residues of Ficus benjamina as a primary biofuel material. Biomass Bioenergy 108:217–223. https://doi.org/10.1016/j.biombioe.2017.11.017 es_ES
dc.description.references Rosso L, Facciotto G, Bergante S, Vietto L, Nervo G (2013) Selection and testing of Populus alba and Salix spp. as bioenergy feedstock: preliminary results. Appl Energy 102:87–92. https://doi.org/10.1016/j.apenergy.2012.07.042 es_ES
dc.description.references Saidur R, Abdelaziz EA, Demirbaş A, Hossain MS, Mekhilef S (2011) A review on biomass as a fuel for boilers. Renew Sustain Energy Rev 15:2262–2289. https://doi.org/10.1016/j.rser.2011.02.015 es_ES
dc.description.references Sajdak M, Velázquez-Martí B (2012) Estimation of pruned biomass through the adaptation of classic dendrometry on urban forests: case study of Sophora japonica. Renew Energy 47:188–193. https://doi.org/10.1016/j.renene.2012.04.002 es_ES
dc.description.references Sajdak M, Velázquez-Martí B, López-Cortés I, Estornell J, Fernández-Sarría A (2014a) Prediction models for estimating pruned biomass obtained from Platanus hispanica Münchh. used for material surveys in urban forests. Renew Energy 66:178–184. https://doi.org/10.1016/j.renene.2013.12.005 es_ES
dc.description.references Sajdak M, Velázquez-Martí B, López-Cortés I (2014b) Quantitative and qualitative characteristics of biomass derived from pruning Phoenix canariensis hort. ex Chabaud. and Phoenix dactilifera L. Renew Energy 71:545–552. https://doi.org/10.1016/j.renene.2014.06.004 es_ES
dc.description.references Savill P, Evans J, Auclair D, Falck J (1997) Plantation silviculture in Europe. Oxford University Press, Oxford, ISBN: 9780198549086 es_ES
dc.description.references Scarlat N, Blukdea V, Dallemand JF (2011) Assessment of the availability of agricultural and forest residues for bioenergy production in Romania. Biomass Bioenergy 35:1995–2005 es_ES
dc.description.references UNE-CEN/TS 14780:2008 EX. Solid biofuels. Methods for the preparation of samples. AENOR, Madrid, Spain, 2008 es_ES
dc.description.references UNE-CEN/TS 15104:2008 EX. Solid biofuels. Determination of the total content of carbon, hydrogen and nitrogen. Instrumental methods. AENOR, Madrid, Spain 2008 es_ES
dc.description.references UNE-EN ISO 17225-3:2014. Solid biofuels. Fuel specifications and classes (Part. 3), AENOR, Madrid, Spain, 2011 es_ES
dc.description.references UNE-EN ISO 17225-4:2014 Solid biofuels. Specifications and fuel classes. Part 4: Wood chips for non-industrial use. AENOR, Madrid, Spain, 2012 es_ES
dc.description.references Van Soest PJ, Robertson JB, Lewis BA (1991) Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 74:3583–3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2 es_ES
dc.description.references Vargas-Moreno JM, Callejón-Ferre AJ, Pérez-Alonso J, Velázquez-Martí B (2012) A review of the mathematical models for predicting the heating value of biomass materials. Renew Sustain Energy Rev 16:3065–3083. https://doi.org/10.1016/j.rser.2012.02.054 es_ES
dc.description.references Velázquez-Martí B (2017) Tratado sobre el aprovechamiento energético de la biomasa. Ed. Reverté. ISBN: 978-84-9048-626-9 es_ES
dc.description.references Velázquez-Martí B, Fernández-González E, López-Cortes I, Salazar-Hernández DM (2011a) Quantification of the residual biomass obtained from pruning of trees in Mediterranean olive groves. Biomass Bioenergy 35(2):3208–3217. https://doi.org/10.1016/j.biombioe.2011.04.042 es_ES
dc.description.references Velázquez-Martí B, Fernández-González E, López-Cortes I, Salazar-Hernández DM (2011b) Quantification of the residual biomass obtained from pruning of trees in Mediterranean almond groves. Renew Energy 36:621–626. https://doi.org/10.1016/j.renene.2010.08.008 es_ES
dc.description.references Velázquez-Martí B, Sajdak M, López-Cortés I, Callejón-Ferre AJ (2014) Wood characterization for energy application proceeding from pruning Morus alba L., Platanus hispanica Münchh. and Sophora japonica L. in urban áreas. Renew Energy 62:478–483. https://doi.org/10.1016/j.renene.2013.08.010 es_ES
dc.description.references Velázquez-Martí B, Gaibor-Chávez J, Pérez-Pacheco S (2016) Quantification based on dimensionless dendrometry and drying of residual biomass from the pruning of orange trees in Bolivar province (Ecuador). Biofuels Bioprod Biorefineries 10:175–185. https://doi.org/10.1002/bbb.1635 es_ES
dc.description.references Zhang L, Xu C, Champagne P (2010) Overview of recent advances in thermo-chemical conversion of biomass. Energy Conv Manag 51:969–982. https://doi.org/10.1016/j.enconman.2009.11.038 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem