Mostrar el registro sencillo del ítem
dc.contributor.author | Velázquez Martí, Borja | es_ES |
dc.contributor.author | Pérez-Arévalo, Juan José | es_ES |
dc.date.accessioned | 2023-09-08T18:00:51Z | |
dc.date.available | 2023-09-08T18:00:51Z | |
dc.date.issued | 2020-02 | es_ES |
dc.identifier.issn | 0167-4366 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/196136 | |
dc.description.abstract | [EN] Pruning agroforestry areas generates significant amounts of lignocellulosic biomass every year. The energy production potential of this biomass is unclear. The aim of this research was to quantify the amount of pruning residues generated from Teak (Tectona grandis), which are composed by mixtures of wood and leaves. An equation from a regression model has been proposed to quantify these residues with a adjusted coefficient of determination (r(2)) of 0.73. On the other hand, mixtures with different wood/leaf ratios of Teak were characterized by its higher heating value (HHV), elemental composition, structural and proximate analysis. This analysis allowed for further development of indirect HHV prediction models that are economically attractive and less time consuming than direct measurements. These models presented high coefficients of determination (r(2) 0.66-0.77). It has been determined that teak has the highest mean HHV of 17,373.7 kJ kg(-1) dry. Elemental analysis showed the highest carbon content was about 46.2%. Mean hydrogen content was 7.5%. Leaf content has influenced on ash and nitrogen percentages. Nevertheless, the amount of nitrogen did not reach 1% for mixtures with leaf ratio lower than 50%. It is concluded that the proposed model can be used to predict the biomass of teak pruning grown in Aw climatic conditions. From the characterization of these pruned materials, the energy, residues and emissions can be estimated. | es_ES |
dc.description.sponsorship | This work has been funded by Universidad Catolica Santiago de Guayaquil through a research program coordinated by the Sistema de Investigacion y Desarrollo (SINDE). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Agroforestry Systems | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Agroforestry | es_ES |
dc.subject | Pruning waste | es_ES |
dc.subject | HHV | es_ES |
dc.subject | Elemental composition | es_ES |
dc.subject | Bioenergy | es_ES |
dc.subject.classification | INGENIERIA AGROFORESTAL | es_ES |
dc.title | Characterization of teak pruning waste as an energy resource | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s10457-019-00387-3 | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural | es_ES |
dc.description.bibliographicCitation | Velázquez Martí, B.; Pérez-Arévalo, JJ. (2020). Characterization of teak pruning waste as an energy resource. Agroforestry Systems. 94(1):241-250. https://doi.org/10.1007/s10457-019-00387-3 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s10457-019-00387-3 | es_ES |
dc.description.upvformatpinicio | 241 | es_ES |
dc.description.upvformatpfin | 250 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 94 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.pasarela | S\386934 | es_ES |
dc.contributor.funder | Universidad Católica de Santiago de Guayaquil | es_ES |
dc.description.references | Acar S, Ayanoglu A (2012) Determination of higher heating values (HHVs) of biomass fuels. Energy Educ Sci Technol 28:749–758 | es_ES |
dc.description.references | Beccali M, Columba P, D’Aleberti V (2009) Assessment of bioenergy potential in Sicily: a GIS-based support methodology. Biomass Bioenergy 33:79–87. https://doi.org/10.1016/j.biombioe.2008.04.019 | es_ES |
dc.description.references | Bernetti I, Fagarazzi C, Fratini R (2004) A methodology to analyze the potential development of biomass energy sector: an application in Tuscany. For Policy Econ 6:415–432. https://doi.org/10.1016/j.forpol.2004.03.018 | es_ES |
dc.description.references | Callejón-Ferre AJ, Carreño-Sánchez J, Suárez-Medina FJ, Pérez-Alonso J, Velázquez-Martí B (2014) Prediction models for higher heating value based on the structural analysis of the biomass of plant remains from the greenhouses of Almería (Spain). Fuel 116:377–387. https://doi.org/10.1016/j.fuel.2013.08.023 | es_ES |
dc.description.references | Chaturvedi R, Raghubanshi AS (2015) Allometric models for accurate estimation of aboveground biomass of teak in tropical dry forests of India. For Sci 61(5):938–949. https://doi.org/10.5849/forsci.14-190 | es_ES |
dc.description.references | Christoforou EA, Fokaides PA, Kyriakides I (2014) Monte Carlo parametric modeling for predicting biomass calorific value. J Therm Anal Calorim 118:1789–1796. https://doi.org/10.1007/s10973-014-4027-5 | es_ES |
dc.description.references | Clutter J, Forston J, Pienaar L, Brister G, Bailey RL (1983) Timber management: a quantitative approach. Wiley, New York, ISBN-13: 978-0894647475 | es_ES |
dc.description.references | Demirbaş A (2003) Relatioships between heating value and lignin, fixed carbon, and volatile material contents of shells from biomass products. Energy Sour 25:629–635. https://doi.org/10.1080/00908310390212336 | es_ES |
dc.description.references | EN 14918:2008. Solid biofuels—determination of the calorific value. European Committee for Standardization | es_ES |
dc.description.references | EN-ISO 18122:2015. Solid biofuels. Determination of ash content. European Committee for Standardization | es_ES |
dc.description.references | EN-ISO 18123:2015. Solid biofuels. Determination of the content of volatile matter. European Committee for Standardization | es_ES |
dc.description.references | FAO (1994) Directrices sobre la planificación del aprovechamiento de la tierra. Colección FAO: Desarrollo, FAO 1994, Roma, Italia. 96 pp | es_ES |
dc.description.references | Gonzalez-Garcia S, Dias AC, Clermidy S, Benoist A, Maurel VB, Gasol AM, Gabarell X, Arroja L (2014) Comparative environmental and energy profiles of potential bioenergy production chains in Southern Europe. J Clean Prod 76:42–54 | es_ES |
dc.description.references | Gu L, Wu S, Li B, Wen H, Zhang D, Ye J, Wang L (2017) Persulfate oxidation assisted hydrochar production from Platanus Orientalis leaves: physiochemical and combustion characteristics. Biores Technol 244:517–524. https://doi.org/10.1016/j.biortech.2017.07.173 | es_ES |
dc.description.references | ISO-EN 18134-3:2017. Solid biofuels. Methods for moisture content determination. Method of oven drying. Part 3. Moisture of the sample for general analysis. European Committee for Standardization | es_ES |
dc.description.references | Jones G, Joeffler D, Calkin D, Chung W (2010) Forest treatment residues for thermal energy compared with disposal by onsite burning: emissions and energy return. Biomass Bioenergy 34:737–746 | es_ES |
dc.description.references | Karmacharya S, Singh KP (1992) Biomass and net production of teak plantations in a dry tropical region in India. For Ecol Manag 55(1–4):233–247. https://doi.org/10.1016/0378-1127(92)90103-G | es_ES |
dc.description.references | Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World map of the Köppen–Geiger climate classification updated. Meteorol Z 15:259–263. https://doi.org/10.1127/0941-2948/2006/0130 | es_ES |
dc.description.references | Manzone M, Balsari P, Spinelli R (2013) Small-scale storage techniques for fuel chips from short rotation forestry. Fuel 109:687–692. https://doi.org/10.1016/j.fuel.2013.03.006 | es_ES |
dc.description.references | Minoche D, Herrero C, Dominguez-Dominguez M, Martinez-Zurimendi P (2017) Determining the site index of teak (Tectona grandis L.) plantations in Tabasco, Mexico. Cien Investig Agraria 44(2):154–167. https://doi.org/10.7764/rcia.v44i2.1645 | es_ES |
dc.description.references | Oluoti K, Richards T, Doddapaneni TRK, Kanagasabapathi D (2014) Evaluation of the pyrolysis and gasification kinetics of tropical wood biomass. BioResources 9(2):2179–2190 | es_ES |
dc.description.references | Partey ST, Oliver BF, Kwaku MY, Sarfo DA (2017) Comparative life cycle analysis of producing charcoal from bamboo, teak, and acacia species in Ghana. Int J Life Cycle Assess 22(5):758–766. https://doi.org/10.1007/s11367-016-1220-8 | es_ES |
dc.description.references | Pérez-Arévalo JJ, Velázquez-Martí B (2018) Evaluation of pruning residues of Ficus benjamina as a primary biofuel material. Biomass Bioenergy 108:217–223. https://doi.org/10.1016/j.biombioe.2017.11.017 | es_ES |
dc.description.references | Rosso L, Facciotto G, Bergante S, Vietto L, Nervo G (2013) Selection and testing of Populus alba and Salix spp. as bioenergy feedstock: preliminary results. Appl Energy 102:87–92. https://doi.org/10.1016/j.apenergy.2012.07.042 | es_ES |
dc.description.references | Saidur R, Abdelaziz EA, Demirbaş A, Hossain MS, Mekhilef S (2011) A review on biomass as a fuel for boilers. Renew Sustain Energy Rev 15:2262–2289. https://doi.org/10.1016/j.rser.2011.02.015 | es_ES |
dc.description.references | Sajdak M, Velázquez-Martí B (2012) Estimation of pruned biomass through the adaptation of classic dendrometry on urban forests: case study of Sophora japonica. Renew Energy 47:188–193. https://doi.org/10.1016/j.renene.2012.04.002 | es_ES |
dc.description.references | Sajdak M, Velázquez-Martí B, López-Cortés I, Estornell J, Fernández-Sarría A (2014a) Prediction models for estimating pruned biomass obtained from Platanus hispanica Münchh. used for material surveys in urban forests. Renew Energy 66:178–184. https://doi.org/10.1016/j.renene.2013.12.005 | es_ES |
dc.description.references | Sajdak M, Velázquez-Martí B, López-Cortés I (2014b) Quantitative and qualitative characteristics of biomass derived from pruning Phoenix canariensis hort. ex Chabaud. and Phoenix dactilifera L. Renew Energy 71:545–552. https://doi.org/10.1016/j.renene.2014.06.004 | es_ES |
dc.description.references | Savill P, Evans J, Auclair D, Falck J (1997) Plantation silviculture in Europe. Oxford University Press, Oxford, ISBN: 9780198549086 | es_ES |
dc.description.references | Scarlat N, Blukdea V, Dallemand JF (2011) Assessment of the availability of agricultural and forest residues for bioenergy production in Romania. Biomass Bioenergy 35:1995–2005 | es_ES |
dc.description.references | UNE-CEN/TS 14780:2008 EX. Solid biofuels. Methods for the preparation of samples. AENOR, Madrid, Spain, 2008 | es_ES |
dc.description.references | UNE-CEN/TS 15104:2008 EX. Solid biofuels. Determination of the total content of carbon, hydrogen and nitrogen. Instrumental methods. AENOR, Madrid, Spain 2008 | es_ES |
dc.description.references | UNE-EN ISO 17225-3:2014. Solid biofuels. Fuel specifications and classes (Part. 3), AENOR, Madrid, Spain, 2011 | es_ES |
dc.description.references | UNE-EN ISO 17225-4:2014 Solid biofuels. Specifications and fuel classes. Part 4: Wood chips for non-industrial use. AENOR, Madrid, Spain, 2012 | es_ES |
dc.description.references | Van Soest PJ, Robertson JB, Lewis BA (1991) Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 74:3583–3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2 | es_ES |
dc.description.references | Vargas-Moreno JM, Callejón-Ferre AJ, Pérez-Alonso J, Velázquez-Martí B (2012) A review of the mathematical models for predicting the heating value of biomass materials. Renew Sustain Energy Rev 16:3065–3083. https://doi.org/10.1016/j.rser.2012.02.054 | es_ES |
dc.description.references | Velázquez-Martí B (2017) Tratado sobre el aprovechamiento energético de la biomasa. Ed. Reverté. ISBN: 978-84-9048-626-9 | es_ES |
dc.description.references | Velázquez-Martí B, Fernández-González E, López-Cortes I, Salazar-Hernández DM (2011a) Quantification of the residual biomass obtained from pruning of trees in Mediterranean olive groves. Biomass Bioenergy 35(2):3208–3217. https://doi.org/10.1016/j.biombioe.2011.04.042 | es_ES |
dc.description.references | Velázquez-Martí B, Fernández-González E, López-Cortes I, Salazar-Hernández DM (2011b) Quantification of the residual biomass obtained from pruning of trees in Mediterranean almond groves. Renew Energy 36:621–626. https://doi.org/10.1016/j.renene.2010.08.008 | es_ES |
dc.description.references | Velázquez-Martí B, Sajdak M, López-Cortés I, Callejón-Ferre AJ (2014) Wood characterization for energy application proceeding from pruning Morus alba L., Platanus hispanica Münchh. and Sophora japonica L. in urban áreas. Renew Energy 62:478–483. https://doi.org/10.1016/j.renene.2013.08.010 | es_ES |
dc.description.references | Velázquez-Martí B, Gaibor-Chávez J, Pérez-Pacheco S (2016) Quantification based on dimensionless dendrometry and drying of residual biomass from the pruning of orange trees in Bolivar province (Ecuador). Biofuels Bioprod Biorefineries 10:175–185. https://doi.org/10.1002/bbb.1635 | es_ES |
dc.description.references | Zhang L, Xu C, Champagne P (2010) Overview of recent advances in thermo-chemical conversion of biomass. Energy Conv Manag 51:969–982. https://doi.org/10.1016/j.enconman.2009.11.038 | es_ES |