- -

Transition to Climate Neutrality at University Campus. Case Study in Europe, Riga

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Transition to Climate Neutrality at University Campus. Case Study in Europe, Riga

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bumbiere, Ketija es_ES
dc.contributor.author Barisa, Aiga es_ES
dc.contributor.author Pubule, Jelena es_ES
dc.contributor.author Blumberga, Dagnija es_ES
dc.contributor.author Gómez-Navarro, Tomás es_ES
dc.date.accessioned 2023-09-12T18:03:45Z
dc.date.available 2023-09-12T18:03:45Z
dc.date.issued 2022-01-01 es_ES
dc.identifier.uri http://hdl.handle.net/10251/196271
dc.description.abstract [EN] 100 cities in Europe have committed to being pioneers and achieving climate neutrality by 2030. It is crucial to start with the decarbonization of cities because, although they cover only 3 % of the Earth's land, they produce 72 % of all greenhouse gas emissions. This paper contributes to the city decarbonization research but on a smaller scale. We study the decarbonization potential of a university campus. It is a unique part of a larger urban area. It represents a cross-section of the population of different socio-economic backgrounds and ages, generating irregular schedules and constant movements of people and goods throughout the day. Riga Technical University is one of the pioneer universities in Latvia that has decided to achieve climate neutrality by 2030. This study aims to provide a qualitative review of the potential for improvements and describe the preliminary CO2 simulation model that includes Scope 1, Scope 2, and Scope 3 emissions. A particular challenge is the Scope 3 emissions, which focus on changing user habits. A survey of Riga Technical University students and employees was developed and conducted to analyse the most effective solutions for this type of emission. Survey results and future work recommendations are presented together with the model outline. es_ES
dc.description.sponsorship This research is funded by the European Social Fund within the Project No 8.2.2.0/20/I/008 'Strengthening of PhD students and academic personnel of Riga Technical University and BA School of Business and Finance in the strategic fields of specialization' of the Specific Objective 8.2.2 'To Strengthen Academic Staff of Higher Education Institutions in Strategic Specialization Areas' of the Operational Programme `Growth and Employment'. es_ES
dc.language Inglés es_ES
dc.publisher Sciendo es_ES
dc.relation.ispartof Environmental and Climate Technologies es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Cities es_ES
dc.subject Climate neutral es_ES
dc.subject Decarbonization es_ES
dc.subject University campus es_ES
dc.subject.classification PROYECTOS DE INGENIERIA es_ES
dc.title Transition to Climate Neutrality at University Campus. Case Study in Europe, Riga es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.2478/rtuect-2022-0071 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/COMISION DE LAS COMUNIDADES EUROPEA//101075582//RENEWABLE ENERGIES SYSTEM FOR CITIES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//PID2021-128822OB-I00//PLANIFICACIÓN DE DISTRITOS URBANOS DE ENERGÍA POSITIVA PURPOSED/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FEDER//8.2.2.0%2F20%2FI%2F008/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.description.bibliographicCitation Bumbiere, K.; Barisa, A.; Pubule, J.; Blumberga, D.; Gómez-Navarro, T. (2022). Transition to Climate Neutrality at University Campus. Case Study in Europe, Riga. Environmental and Climate Technologies. 26(1):941-954. https://doi.org/10.2478/rtuect-2022-0071 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.2478/rtuect-2022-0071 es_ES
dc.description.upvformatpinicio 941 es_ES
dc.description.upvformatpfin 954 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 26 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 2255-8837 es_ES
dc.relation.pasarela S\478720 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder COMISION DE LAS COMUNIDADES EUROPEA es_ES
dc.description.references [1] Beniston M., Tol R.S.J. The Potential Impacts of Climate Change on Europe. Energy & Environment 2016:9(4):365–381. https://doi.org/10.1177/0958305X9800900403 es_ES
dc.description.references [2] Parry M. L. Assessment of Potential Effects and Adaptations for Climate Change in Europe. Norwich: University of East Anglia, 2000. es_ES
dc.description.references [3] WWF-Australia. Causes of Global Warming [Online]. [Accessed 15.11.2021]. Available: https://www.wwf.org.au/what-we-do/climate/causes-of-global-warming#gs.gjlqju es_ES
dc.description.references [4] Olesen J. E., Bindi M. Consequences of climate change for European agricultural productivity, land use and policy. Eur. J. Agron. 2002:16(4):239–262. https://doi.org/10.1016/S1161-0301(02)00004-7 es_ES
dc.description.references [5] Milad M., et al. Climate change and nature conservation in Central European forests: A review of consequences, concepts and challenges. For. Ecol. Manage 2011:261:829–843. https://doi.org/10.1016/J.FORECO.2010.10.038 es_ES
dc.description.references [6] Escandón R., et al. Is indoor overheating an upcoming risk in southern Spain social housing stocks? Predictive assessment under a climate change scenario. Build. Environ 2022:207:108482. https://doi.org/10.1016/J.BUILDENV.2021.108482 es_ES
dc.description.references [7] IPCC. Climate change widespread, rapid, and intensifying. [Online]. [Accessed 15.11.2021]. Available: https://www.ipcc.ch/2021/08/09/ar6-wg1-20210809-pr/ es_ES
dc.description.references [8] World Meteorological Organization. State of Climate in 2021: Extreme events and major impacts [Online]. [Accessed 15.11.2021]. Available: https://public.wmo.int/en/media/press-release/state-of-climate-2021-extreme-events-and-major-impacts es_ES
dc.description.references [9] European Council. Paris Agreement on climate change. [Online]. [Accessed 15.11.2021]. Available: https://www.consilium.europa.eu/en/policies/climate-change/paris-agreement/ es_ES
dc.description.references [10] European Comission. 100 Climate-neutral Cities by 2030 – by and for the Citizens [Online]. [Accessed 15.11.2021]. Available: https://ec.europa.eu/info/publications/100-climate-neutral-cities-2030-and-citizens_en es_ES
dc.description.references [11] Tolley R. Green campuses: Cutting the environmental cost of commuting. J. Transp. Geogr. 1996:4(3):213–217. https://doi.org/10.1016/0966-6923(96)00022-1 es_ES
dc.description.references [12] Papantoniou P., et al. Developing a Sustainable Mobility Action Plan for University Campuses. Transp. Res. Procedia 2020:48:1908–1917. https://doi.org/10.1016/J.TRPRO.2020.08.223 es_ES
dc.description.references [13] EPA. Scope 1 and Scope 2 Inventory Guidance [Online]. [Accessed 17.11.2021]. Available: https://www.epa.gov/climateleadership/scope-1-and-scope-2-inventory-guidance es_ES
dc.description.references [14] EPA. Scope 3 Inventory Guidance [Online]. [Accessed 17.11.2021]. Available: https://www.epa.gov/climateleadership/scope-3-inventory-guidance es_ES
dc.description.references [15] Shriberg M. Assessing Sustainability: Criteria, Tools, and Implications. Higher Education and the Challenge of Sustainability. Dordrecht: Springer, 2004:71–86.10.1007/0-306-48515-X_6 es_ES
dc.description.references [16] Jain S., Pant P. Environmental management systems for educational institutions: A case study of TERI University, New Delhi. Int. J. Sustain. High. Educ 2010:11:236–249.10.1108/14676371011058532 es_ES
dc.description.references [17] Chen S., et al. Urban carbon footprints across scale: Important considerations for choosing system boundaries. Appl. Energy 2020:259:114201. https://doi.org/10.1016/J.APENERGY.2019.114201 es_ES
dc.description.references [18] Riga Technical University. RTU līdz 2030. gadam plāno sasniegt klimata neitralitāti (RTU plans to achieve climate neutrality by 2030 [online]. [Accessed 10.01.2022]. Available: https://www.rtu.lv/lv/universitate/masumedijiem/zinas/atvert/rtu-lidz-2030-gadam-plano-sasniegt-klimata-neitralitati es_ES
dc.description.references [19] University of Salford. Scope 3 Emissions Report. Manchester: University of Salford, 2021. es_ES
dc.description.references [20] Kourgiozou V., et al. Scalable pathways to net zero carbon in the UK higher education sector: A systematic review of smart energy systems in university campuses. Renew. Sustain. Energy Rev. 2021:147:111234. https://doi.org/10.1016/J.RSER.2021.111234 es_ES
dc.description.references [21] Penn State University. College of EMS offsets carbon emissions one tree at a time [Online]. [Accessed 21.03.2022]. Available: https://www.psu.edu/news/impact/story/college-ems-offsets-carbon-emissions-one-tree-time/ es_ES
dc.description.references [22] Landscape Ontario. Trees for Life helps university reduce its carbon footprint [Online]. [Accessed 21.03.2022]. Available: https://landscapeontario.com/trees-for-life-helps-university-reduce-its-carbon-footprint es_ES
dc.description.references [23] Herrero C., Bravo F. Can we get an operational indicator of forest carbon sequestration? A case study from two forest regions in Spain. Ecol. Indic. 2012:17:120–126. https://doi.org/10.1016/J.ECOLIND.2011.04.021 es_ES
dc.description.references [24] Bastin J. F., et al. The global tree restoration potential. Science 2019:364(80):76–79.10.1126/science.aax084831273120 es_ES
dc.description.references [25] Elias M., Potvin C. Assessing inter- and intra-specific variation in trunk carbon concentration for 32 neotropical tree species. Can. J. For. Res 2003:33:1039–1045. https://doi.org/10.1139/X03-018 es_ES
dc.description.references [26] Djedjig R., Belarbi R., Bozonnet E. Experimental study of green walls impacts on buildings in summer and winter under an oceanic climate. Energy Build. 2017:150:403–411. https://doi.org/10.1016/J.ENBUILD.2017.06.032 es_ES
dc.description.references [27] Pérez-Urrestarazu L., et al. Influence of an active living wall on indoor temperature and humidity conditions. Ecol. Eng. 2016:90:120–124. https://doi.org/10.1016/J.ECOLENG.2016.01.050 es_ES
dc.description.references [28] Addo-Bankas O., et al. Green walls: A form of constructed wetland in green buildings. Ecol. Eng. 2021:169:106321. https://doi.org/10.1016/J.ECOLENG.2021.106321 es_ES
dc.description.references [29] Ragheb A., El-Shimy H., Ragheb G. Green Architecture: A Concept of Sustainability. Procedia - Soc. Behav. Sci. 2016:216:778–787. https://doi.org/10.1016/J.SBSPRO.2015.12.075 es_ES
dc.description.references [30] Scopus - Document details - Bibliometric Analysis of the Solar Thermal System Control Methods [Online]. [Accessed es_ES
dc.description.references 32.03.2022]. Available: https://www-scopus-com.resursi.rtu.lv/record/display.uri?eid=2-s2.0-85121922882&origin=resultslist&sort=plff&src=s&st1=mikelis+dzikevics&sid=b1524778d34b7ee73861149b243e1be5&sot=b&sdt=b&sl=30&s=AUTHOR-NAME%28mikelis+dzikevics%29&relpos=0&citeCnt=0&searchTerm= es_ES
dc.description.references [31] Olivieri L., et al. Contribution of photovoltaic distributed generation to the transition towards an emission-free supply to university campus: technical, economic feasibility and carbon emission reduction at the Universidad Politécnica de Madrid. Renew. Energy 2020:162:1703–1714. https://doi.org/10.1016/J.RENENE.2020.09.120 es_ES
dc.description.references [32] Agdas D., et al. Energy use assessment of educational buildings: Toward a campus-wide sustainable energy policy, Sustain. Cities Soc. 2015:17:15–21. https://doi.org/10.1016/J.SCS.2015.03.001 es_ES
dc.description.references [33] Opel O., et al. Climate-neutral and sustainable campus Leuphana University of Lueneburg. Energy 2017:141:2628–2639. https://doi.org/10.1016/J.ENERGY.2017.08.039 es_ES
dc.description.references [34] American University. Carbon Neutrality [Online]. [Accessed 18.01.2022]. Available: https://www.american.edu/about/sustainability/carbon-neutrality.cfm es_ES
dc.description.references [35] Hax D. R., et al. Influence of user behavior on energy consumption in a university building versus automation costs. Energy Build. 2022:256:111730. https://doi.org/10.1016/J.ENBUILD.2021.111730 es_ES
dc.description.references [36] Riga Technical University. Rīgas Tehniskās Universitātes Ziņojums Par Vidi 2020. Gadā (Riga Technical University Report on the Environment in 2020). Riga: RTU. es_ES
dc.description.references [37] Leiria D., et al. Using data from smart energy meters to gain knowledge about households connected to the district heating network: A Danish case. Smart Energy 2021:3:100035. https://doi.org/10.1016/J.SEGY.2021.100035 es_ES
dc.description.references [38] Kim D.-J., Kim S.-I., Kim H.-S. Thermal simulation trained deep neural networks for fast and accurate prediction of thermal distribution and heat losses of building structures. Appl. Therm. Eng. 2022:202:117908. https://doi.org/10.1016/J.APPLTHERMALENG.2021.117908 es_ES
dc.description.references [39] Paul A., et al. Impact of aging on the energy efficiency of household refrigerating appliances. Appl. Therm. Eng. 2022:205:117992. https://doi.org/10.1016/J.APPLTHERMALENG.2021.117992 es_ES
dc.description.references [40] Fidar A. M., Memon F. A., Butler D. Performance evaluation of conventional and water saving taps. Sci. Total Environ. 2016:541:815–824. https://doi.org/10.1016/J.SCITOTENV.2015.08.02426437352 es_ES
dc.description.references [41] EL-Nwsany R. I., Maarouf I., Abd el-Aal W. Water management as a vital factor for a sustainable school. Alexandria Eng. J. 2019:58(1):303–313. https://doi.org/10.1016/J.AEJ.2018.12.012 es_ES
dc.description.references [42] Adeyeye K., Meireles I., Booth C. A. Chapter 5 - Technical and non-technical strategies for water efficiency in buildings. Sustain. Water Eng. 2020:61–80. https://doi.org/10.1016/B978-0-12-816120-3.00015-4 es_ES
dc.description.references [43] Kalantari S., et al. Evaluating the impacts of color, graphics, and architectural features on wayfinding in healthcare settings using EEG data and virtual response testing. J. Environ. Psychol. 2022:79:101744. https://doi.org/10.1016/J.JENVP.2021.101744 es_ES
dc.description.references [44] EcoReactor. Urban meadows, or why it’s better to forget about a trimmed lawn? [Online]. [Accessed 16.01.2022]. Available: https://ecoreactor.org/urban-meadows/ es_ES
dc.description.references [45] Chollet S., et al. From urban lawns to urban meadows: Reduction of mowing frequency increases plant taxonomic, functional and phylogenetic diversity. Landsc. Urban Plan. 2018:180:121–124. https://doi.org/10.1016/J.LANDURBPLAN.2018.08.009 es_ES
dc.description.references [46] Fundacja Łąka. Łąka kwietna bronią przeciw smogowi! (Flower meadow as a weapon against smog!) [Online]. [Accessed 16.01.2022]. Available: https://laka.org.pl/co-robimy/laka-antysmogowa/ (in Polish) es_ES
dc.subject.ods 13.- Tomar medidas urgentes para combatir el cambio climático y sus efectos es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem