- -

Accelerating urban scale simulations leveraging local spatial 3D structure

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Accelerating urban scale simulations leveraging local spatial 3D structure

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Iserte, Sergio es_ES
dc.contributor.author Macías, Aina es_ES
dc.contributor.author Martínez-Cuenca, Raúl es_ES
dc.contributor.author Chiva, Sergio es_ES
dc.contributor.author Paredes Palacios, Roberto es_ES
dc.contributor.author Quintana-Ortí, Enrique S. es_ES
dc.date.accessioned 2023-09-12T18:04:37Z
dc.date.available 2023-09-12T18:04:37Z
dc.date.issued 2022-07 es_ES
dc.identifier.issn 1877-7503 es_ES
dc.identifier.uri http://hdl.handle.net/10251/196279
dc.description.abstract [EN] This paper presents a hybrid methodology for accelerating Computational Fluid Dynamics (CFD) simulations intertwining inferences from deep neural networks (DNN). The strategy leverages the local spatial data of the velocity field to leverage three-dimensional convolutional kernels within DNN. The hybrid workflow is composed of two-step cycles where CFD solvers calculations are utilized to feed predictive models, whose inferences, in turn, accelerate the simulation of the fluid evolution compared with traditional CFD. This approach has proved to reduce 30% time-to-solution in an urban scale study case, which leads to generating massive datasets at a fraction of the cost. es_ES
dc.description.sponsorship Researcher S. Iserte was supported by postdoctoral fellowship APOSTD/2020/026 from GVA-ESF. While researcher A. Macias was supported by predoctoral fellowship FDGENT from GVA. CTE-Power cluster of the Barcelona Supercomputing Center, and Tirant III cluster of the Servei d'Informatica of the University of Valencia were leveraged in this research. Authors want to thank the anonymous reviewers whose suggestions significantly improved the quality of this manuscript. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Computational Science es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Computational fluid dynamics es_ES
dc.subject Structured mesh es_ES
dc.subject Convolutional neural network es_ES
dc.subject High performance computing es_ES
dc.subject Data-driven simulations es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title Accelerating urban scale simulations leveraging local spatial 3D structure es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.jocs.2022.101741 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//APOSTD%2F2020%2F026/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//FDGENT/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.description.bibliographicCitation Iserte, S.; Macías, A.; Martínez-Cuenca, R.; Chiva, S.; Paredes Palacios, R.; Quintana-Ortí, ES. (2022). Accelerating urban scale simulations leveraging local spatial 3D structure. Journal of Computational Science. 62:1-11. https://doi.org/10.1016/j.jocs.2022.101741 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.jocs.2022.101741 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 62 es_ES
dc.relation.pasarela S\483583 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder European Regional Development Fund es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem