- -

Compression and load balancing for efficient sparse matrix-vector product on multicore processors and graphics processing units

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Compression and load balancing for efficient sparse matrix-vector product on multicore processors and graphics processing units

Mostrar el registro completo del ítem

Aliaga, JI.; Anzt, H.; Grützmacher, T.; Quintana-Ortí, ES.; Tomás Domínguez, AE. (2022). Compression and load balancing for efficient sparse matrix-vector product on multicore processors and graphics processing units. Concurrency and Computation: Practice and Experience. 34(14):1-13. https://doi.org/10.1002/cpe.6515

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/196280

Ficheros en el ítem

Metadatos del ítem

Título: Compression and load balancing for efficient sparse matrix-vector product on multicore processors and graphics processing units
Autor: Aliaga, José I. Anzt, Hartwig Grützmacher, Thomas Quintana-Ortí, Enrique S. Tomás Domínguez, Andrés Enrique
Entidad UPV: Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors
Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica
Fecha difusión:
Resumen:
[EN] We contribute to the optimization of the sparse matrix-vector product by introducing a variant of the coordinate sparse matrix format that balances the workload distribution and compresses both the indexing arrays and ...[+]
Palabras clave: Compression , Coordinate sparse matrix format , Graphics processing units (GPUs) , Multicore processors (CPUs) , Sparse matrix-vector product , Workload balancing.
Derechos de uso: Reserva de todos los derechos
Fuente:
Concurrency and Computation: Practice and Experience. (issn: 1532-0626 )
DOI: 10.1002/cpe.6515
Editorial:
John Wiley & Sons
Versión del editor: https://doi.org/10.1002/cpe.6515
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-82972-R/ES/TECNICAS ALGORITMICAS PARA COMPUTACION DE ALTO RENDIMIENTO CONSCIENTE DEL CONSUMO ENERGETICO Y RESISTENTE A ERRORES/
info:eu-repo/grantAgreement/DOE//17-SC-20-SC//Exascale Computing Project/
info:eu-repo/grantAgreement/Helmholtz Association of German Research Centers//VH-NG-1241/
Agradecimientos:
J. I. Aliaga, E. S. Quintana-Ortí, and A. E. Tomás were supported by TIN2017-82972-R of the Spanish MINECO. H. Anzt and T. Grützmacher were supported by the Impuls und Vernetzungsfond of the Helmholtz Association under ...[+]
Tipo: Artículo

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem