Abstract:
|
[ES] La presente tesis doctoral se desarrolla en el ámbito de la catálisis, la cual está enmarcada dentro del concepto de Química Sostenible. En concreto, la investigación se ha centrado en el desarrollo y aplicación de ...[+]
[ES] La presente tesis doctoral se desarrolla en el ámbito de la catálisis, la cual está enmarcada dentro del concepto de Química Sostenible. En concreto, la investigación se ha centrado en el desarrollo y aplicación de nuevos catalizadores basados en nanopartículas metálicas coloidales y soportadas para llevar a cabo reacciones de interés. Todas las MNPs sintetizadas en esta tesis doctoral se llevaron a cabo a partir de la aproximación organometálica, donde generalmente se descompone un precursor organometálico bajo condiciones suaves de reacción y en presencia de un agente estabilizador (molécula orgánica o soporte).
En el Capítulo 4 de la tesis, se ha descrito el primer ejemplo de estabilización de Ru NPs con una nueva familia de ligandos policíclicos aromáticos no planos, denominados nanografenos (hept-HBC). Específicamente, se han utilizado dos tipos distintos de nanografeno distorsionado: i) uno funcionalizado con un grupo carbonilo, y ii) otro funcionalizado con una grupo metileno en la misma posición (Ru@1 y Ru@2, respectivamente). Gracias a la similitud con los sistemas basados en MNPs soportadas en grafeno o derivados, este material puede utilizarse como referencia para estudiar los modos de coordinación y las dinámicas de estos con la superficie de la nanopartícula. A partir de un estudio combinado teórico/experimental se ha demostrado que la curvatura de los nanografenos hept-HBC es crucial para la estabilización de las Ru NPs. Por último, se ha evaluado la actividad catalítica de estas Ru NPs en la hidrogenación de multitud de sustratos aromáticos, observándose diferencias significativas en función del ligando estabilizador utilizado.
En el Capítulo 5 se ha investigado la formación de MNPs a través de la aproximación organometálica utilizando el óxido de grafeno reducido dopado con átomos de nitrógeno (NH2-rGO) como soporte. En la primera parte del capítulo, sintetizamos Ru NPs soportadas sobre NH2-rGO (Ru@NH2-rGO) y rGO (Ru@rGO), con la intención de investigar el rol de los átomos de N en la estabilización de las MNPs, así como en su actividad catalítica. Para ello, se estudió la hidrogenación del ácido palmítico a 1-hexadecanol, siendo el Ru@NH2-rGO el catalizador heterogéneo monometálico de Ru más activo y selectivo reportado hasta la fecha (99% conversión y 93 % selectivo). En la segunda parte del capítulo, generamos PtRu NPs con distintas composiciones atómicas (5:1, 1:1 y 1:5) sobre NH2-rGO, siguiendo la aproximación organometálica. La misma velocidad de descomposición de los precursores Pt(NBE)3 y Ru(COD)(COT) nos permitió generar las NPs de tipo aleación. Estos sistemas bimetálicos (PtxRuy@NH2-rGO) se estudiaron en la hidrogenación de multitud de compuestos con grupos polares (C=O), observándose diferencias significativas en función del soporte utilizado y la composición atómica de las MNPs.
Por último, en el Capítulo 6 se investigó el uso de nanopartículas magnéticas (MagNPs) para emitir calor por pérdidas de histéresis en presencia de un campo magnético oscilante de alta frecuencia. En primer lugar, se generaron nuevos agentes calefactores basados en MagNPs bimetálicas de tipo "core-shell" de CoNi encapsuladas en carbono (Co@Ni@C), con el objetivo de hidrogenar selectivamente el CO2 a CO (RWGS) obteniéndose excelentes resultados catalíticos. Por último, también presentamos la síntesis de una nueva MagNP de tipo "core-shell" (FeCo@Ni) para su aplicación en catálisis inducida magnéticamente en disolución, siendo capaz de modular su selectividad al producto de la hidrogenación o de la hidrodesoxigenación del HMF en función del campo magnético aplicado. Además, después de su encapsulación en carbono (FeCo@Ni@C) han demostrado ser activas, selectivas y estables en la reducción de multitud de sustratos oxigenados derivados de la biomasa en medio acuoso, siendo el primer ejemplo reportado hasta la fecha de catálisis magnética realizada en agua.
[-]
[CAT] La present Tesi Doctoral es desenvolupa en l'àmbit de la catàlisi, la qual està emmarcada dins del concepte de Química Sostenible. Concretament, la investigació s'ha centrat en el desenvolupament i aplicació de nous ...[+]
[CAT] La present Tesi Doctoral es desenvolupa en l'àmbit de la catàlisi, la qual està emmarcada dins del concepte de Química Sostenible. Concretament, la investigació s'ha centrat en el desenvolupament i aplicació de nous catalitzadors basats en nanopartícules metàl·liques col·loïdals i suportades per dur a terme reaccions d'interès. Totes les MNPs sintetitzades en aquesta tesi doctoral es van dur a terme a partir de l'aproximació organometàl·lica, on generalment es descompon un precursor organometàl·lic sota condicions suaus de reacció i en presència d'un agent estabilitzador (molècula orgànica o suport).
En el Capítol 4 de la Tesi, s'ha descrit el primer exemple d'estabilització de Ru NPs amb una nova família de lligands policíclics aromàtics no plans, denominats nanografens (hept-HBC). Específicament, s'han utilitzat dos tipus diferents de nanografen distorsionat: i) un funcionalitzat amb un grup carbonil, i un altre ii) funcionalitzat amb un grup metilè en la mateixa posició (Ru@1 i Ru@2, respectivament). Gràcies a la similitud amb els sistemes basats en MNPs suportades en grafè o derivats, aquest material pot utilitzar-se com a referència per a estudiar els modes de coordinació i dinàmiques d'aquests amb la superfície de la nanopartícula. A partir d'un estudi combinat teòric/experimental s'ha demostrat que la curvatura dels nanografens hept-HBC és crucial per a l'estabilització de les Ru NPs. Finalment, s'ha avaluat l'activitat catalítica d'aquestes Ru NPs en la hidrogenació de multitud de substrats aromàtics, observant diferències significatives en funció del lligand estabilitzador utilitzat.
En el Capítol 5 s'ha investigat la formació de MNPs a través de l'aproximació organometàl·lica utilitzant l'òxid de grafè reduït dopat amb àtoms de nitrogen (NH2-rGO) com a suport. En la primera part del capítol, vam sintetitzar Ru NPs suportades sobre NH2-rGO (Ru@NH2-rGO) i rGO (Ru@rGO), amb l'intenció d'investigar el paper dels àtoms de N en l'estabilització de les MNPs, així com en la seua activitat catalítica. Per a això, es va estudiar la hidrogenació de l'àcid palmític a 1-hexadecanol, sent el Ru@NH2-rGO el catalitzador heterogeni monometàl·lic de Ru més actiu i selectiu reportat fins a la data (99% conversió i 93 % selectiu). En la segona part del capítol, es van generar PtRu NPs amb diferents composicions atòmiques (5:1, 1:1 i 1:5) sobre NH2-rGO, seguint l'aproximació organometàl·lica. La mateixa velocitat de descomposició dels precursores Pt(NBE)3 i Ru(COD)(COT) ens va permetre generar les NPs de tipus aliatge. Aquests sistemes bimetàl·lics (PtxRuy@NH2-rGO) es van estudiar en la hidrogenació de multitud de compostos amb grups polars (C=O), observant-se diferències significatives en funció del suport utilitzat i la composició atòmica de les MNPs.
Finalment, en el Capítol 6 es va investigar l'ús de nanopartícules magnètiques (MagNPs) per emetre calor per pèrdues d'histèresi en presència d'un camp magnètic oscil·lant d'alta freqüència. En primer lloc, es van generar nous agents calefactores basats en generar MagNPs bimetàl·liques de tipus "core-shell" de CoNi encapsulades en carbó (Co@Ni@C), amb l'objectiu d'hidrogenar selectivament el CO2 a CO (RWGS) obtenint excel·lents resultats catalítics. Finalment, també presentem la síntesi d'una nova MagNP de tipus "core-shell" (FeCo@Ni) per a la seva aplicació en catàlisi induïda magnèticament en solució, demostrant ser capaç de modular la seva selectivitat al producte de l'hidrogenació o de l'hidrodesoxigenació del HMF en funció del camp magnètic aplicat. A més, després de la seva encapsulació en carbó (FeCo@Ni@C) han demostrat ser actives, selectives i estables en la reducció de multitud de substrats oxigenats derivats de la biomassa en medi aquós, sent el primer exemple reportat fins a la data de catàlisi magnètica realitzada en aigua.
[-]
[EN] This Doctoral Thesis is developed in the field of catalysis, which is framed within the concept of Sustainable Chemistry. Specifically, the research has focused on the development and application of new catalysts based ...[+]
[EN] This Doctoral Thesis is developed in the field of catalysis, which is framed within the concept of Sustainable Chemistry. Specifically, the research has focused on the development and application of new catalysts based on colloidal and supported metallic nanoparticles to carry out relevant catalytic reactions. All the MNPs synthesized in this doctoral thesis were carried out from the organometallic approach, where an organometallic precursor is generally decomposed under mild conditions, room temperature and 3 bar H2, in the presence of a stabilizing agent (organic molecule, polymer, or support).
The catalytic properties of MNPs are greatly influenced by the stabilizing agents used, which are capable of modifying their electronic and steric properties. Therefore, the search for new ligands capable of modulating these properties is of great scientific interest. In Chapter 4 of the Thesis, we describe the first example of Ru NPs stabilized with a new family of non-planar polycyclic aromatic ligands, called nanographenes (hept-HBC). Specifically, two different types of distorted nanographene have been used: i) one functionalized with a carbonyl group, and another ii) functionalized with a methylene group in the same position (Ru@1 and Ru@2, respectively). Thanks to the resemblance with systems based on supported-MNPs on graphene or derivatives, this material can be used as a reference to study the coordination modes and dynamics of these with the surface of the nanoparticle. A combined theoretical/experimental study revealed that the curvature of hept-HBC nanographenes is crucial for the stabilization of Ru NPs. Finally, the catalytic activity of these Ru NPs has been evaluated in the hydrogenation of multitude of arenes, observing significant differences depending on the stabilizing ligand used.
In Chapter 5, the formation of MNPs through the organometallic approach was investigated using reduced graphene oxide N-doped (NH2-rGO) as support. In the first part of the chapter, Ru NPs supported on NH2-rGO (Ru@NH2-rGO) and rGO (Ru@rGO) were synthesized, with the aim of investigating the role of N atoms in the stabilization of the MNPs, as well as their catalytic activity. For this purpose, the hydrogenation of palmitic acid to 1-hexadecanol was studied, and Ru@NH2-rGO was found to be the most active and selective monometallic Ru-based heterogeneous catalyst reported to date (99% conversion and 93% selectivity). In the second part of the chapter, PtRu NPs with different atomic compositions (5:1, 1:1, and 1:5) were generated on NH2-rGO using the organometallic approach. The same decomposition rate of Pt(NBE)3 and Ru(COD)(COT) precursors allowed us to generate alloy-type NPs. These bimetallic systems (PtxRuy@NH2-rGO) were studied in the hydrogenation of a variety of compounds with polar groups (C=O), and significant differences were observed depending on the support used and the atomic composition of the MNPs.
Finally, in Chapter 6 the use of magnetic nanoparticles (MagNPs) for heat generation through hysteresis losses in the presence of a high-frequency oscillating magnetic field was investigated. Firstly, new heat-generating agents based on bimetallic core-shell type CoNi MagNPs encapsulated in carbon (Co@Ni@C) were synthesized with the aim of selectively hydrogenate CO2 to CO (RWGS), obtaining excellent catalytic results. Finally, a new core-shell type MagNP (FeCo@Ni@C), the MagNPs proved to be active, selective, and stable in the reduction of several oxygenated substrates derived from biomass in aqueous media, being the first reported example of magnetic catalysis performed in water to date. In Chapter 6, the crucial role of MagNP encapsulation was demonstrated, where carbon not only limits the total oxidation of MagNPs but also prevents their sintering at high temperatures (~ 700 °C) in gas phase and avoids their aggregation in liquid phase.
[-]
|