- -

Robotics-based vineyard water potential monitoring at high resolution

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Robotics-based vineyard water potential monitoring at high resolution

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Saiz-Rubio, Verónica es_ES
dc.contributor.author Rovira Más, Francisco es_ES
dc.contributor.author Cuenca-Cuenca, Andrés es_ES
dc.contributor.author Alves, Fernando es_ES
dc.date.accessioned 2023-09-18T18:01:59Z
dc.date.available 2023-09-18T18:01:59Z
dc.date.issued 2021-08 es_ES
dc.identifier.issn 0168-1699 es_ES
dc.identifier.uri http://hdl.handle.net/10251/196714
dc.description.abstract [EN] The purpose of this research is deploying a proximal sensing solution using non-invasive and cost-effective sensors onboard an Autonomous Ground Vehicle (AGV) as a feasible way for building high-resolution maps of water potential in vineyards. The final objective is offering growers a practical system to make decisions about water management, especially for arid climatic conditions. The monitoring AGV was entirely developed within this research context, and as a result, it is a machine specifically designed to endure off-road conditions and harsh environments. The autonomous vehicle served as a massive, non-invasive, and on-the-go data collector robotic platform. The sensors used for measuring the relevant field variables were two spectral reflectance sensors (SRS), an infrared radiometer, and an on-board weather sensor. The collected data were displayed on comprehensible grid maps using the Local Tangent Plane (LTP) coordinate system. The proposed model has a coefficient of determination R-2 of 0.69, and results from combining six parameters: the canopy and air temperatures (as the temperature difference), the relative humidity, the altitude difference, the Normalized Difference Vegetation Index (NDVI), and the Photochemical Reflectance Index (PRI). The strongest relationships found in this study were between the temperature difference and PRI, with an R-2 of 0.75, and the temperature difference with the leaf water potential with an R-2 of 0.61. The practical use of these high-resolution maps includes irrigation scheduling and harvest zoning for sorting grape quality, with a further use as inputs to complex artificial intelligence algorithms considering larger areas or complementing airborne data. Future improvements to make the models more robust and versatile will entail considering additional variables, locations, or grapevine cultivars, and even other crops grown in vertical trellis systems. es_ES
dc.description.sponsorship This work has been developed under grant agreement N¿737669 of the European Union¿s Horizon 2020 research and innovation program, and it has received the support of Symington Family States owners and technicians, whose assistance is deeply appreciated. In particular, the Symington family (Dominic, John, and Charles), and staff members Joana Valente, Artur Moreira, and Pedro Leal da Costa. Likewise, Juan José Peña Suárez and Montano Pérez Teruel from the Universitat Politècnica de València in Spain are greatly thanked for their continuous support. This work was supported by the European Union's Horizon 2020 research and innovation programme (grant agreement number 737669) . The opinions expressed reflect only the authors' view. Neither the European Commission, nor the funding agency, nor its services are responsible for any use that may be made of the information that this publication contains. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Computers and Electronics in Agriculture es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Precision Agriculture es_ES
dc.subject PRI es_ES
dc.subject Plant water potential es_ES
dc.subject Proximal sensing es_ES
dc.subject Autonomous Ground Vehicle (AGV) es_ES
dc.subject.classification INGENIERIA AGROFORESTAL es_ES
dc.title Robotics-based vineyard water potential monitoring at high resolution es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.compag.2021.106311 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/737669/EU es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural es_ES
dc.description.bibliographicCitation Saiz-Rubio, V.; Rovira Más, F.; Cuenca-Cuenca, A.; Alves, F. (2021). Robotics-based vineyard water potential monitoring at high resolution. Computers and Electronics in Agriculture. 187:1-12. https://doi.org/10.1016/j.compag.2021.106311 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.compag.2021.106311 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 187 es_ES
dc.relation.pasarela S\442498 es_ES
dc.contributor.funder COMISION DE LAS COMUNIDADES EUROPEA es_ES
dc.subject.ods 02.- Poner fin al hambre, conseguir la seguridad alimentaria y una mejor nutrición, y promover la agricultura sostenible es_ES
dc.subject.ods 12.- Garantizar las pautas de consumo y de producción sostenibles es_ES
dc.subject.ods 13.- Tomar medidas urgentes para combatir el cambio climático y sus efectos es_ES
dc.subject.ods 15.- Proteger, restaurar y promover la utilización sostenible de los ecosistemas terrestres, gestionar de manera sostenible los bosques, combatir la desertificación y detener y revertir la degradación de la tierra, y frenar la pérdida de diversidad biológica es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem