- -

The Impact of Psycholinguistic Patterns in Discriminating between Fake News Spreaders and Fact Checkers

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The Impact of Psycholinguistic Patterns in Discriminating between Fake News Spreaders and Fact Checkers

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Giachanou, Anastasia es_ES
dc.contributor.author Ghanem, Bilal Hisham Hasan es_ES
dc.contributor.author Rissola, Esteban A. es_ES
dc.contributor.author Rosso, Paolo es_ES
dc.contributor.author Crestani, Fabio es_ES
dc.contributor.author Oberski, Daniel es_ES
dc.date.accessioned 2023-09-18T18:02:06Z
dc.date.available 2023-09-18T18:02:06Z
dc.date.issued 2022-03-31 es_ES
dc.identifier.issn 0169-023X es_ES
dc.identifier.uri http://hdl.handle.net/10251/196716
dc.description.abstract [EN] Fake news is a threat to society. A huge amount of fake news is posted every day on social networks which is read, believed and sometimes shared by a number of users. On the other hand, with the aim to raise awareness, some users share posts that debunk fake news by using information from fact-checking websites. In this paper, we are interested in exploring the role of various psycholinguistic characteristics in differentiating between users that tend to share fake news and users that tend to debunk them. Psycholinguistic characteristics represent the different linguistic information that can be used to profile users and can be extracted or inferred from users¿ posts. We present the CheckerOrSpreader model that uses a Convolution Neural Network (CNN) to differentiate between spreaders and checkers of fake news. The experimental results showed that CheckerOrSpreader is effective in classifying a user as a potential spreader or checker. Our analysis showed that checkers tend to use more positive language and a higher number of terms that show causality compared to spreaders who tend to use a higher amount of informal language, including slang and swear words. es_ES
dc.description.sponsorship The works of Anastasia Giachanou and Daniel Oberski were funded by the Dutch Research Council (grant VI.Vidi.195.152). The work of Paolo Rosso was in the framework of the XAI-DisInfodemics project on eXplainable AI for disinformation and conspiracy detection during infodemics (PLEC2021-007681), funded by the Spanish Ministry of Science and Innovation, as well as IBERIFIER, the Iberian Digital Media Research and Fact-Checking Hub funded by the European Digital Media Observatory (2020-EU-IA0252). es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Data & Knowledge Engineering es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Fake news es_ES
dc.subject Linguistic analysis es_ES
dc.subject Misinformation es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title The Impact of Psycholinguistic Patterns in Discriminating between Fake News Spreaders and Fact Checkers es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.datak.2021.101960 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PLEC2021-007681/ES/IA explicable para desinformación y detección de conspiración durante infodemias (XAI-DisInfodemics)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/INEA//INEA%2FCEF%2FICT%2FA2020%2F2381931/EU/Iberian Digital Media Research and Fact-Checking Hub/IBERIFIER es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC//2020-EU-IA-0252/EU/Iberian Digital Media Research and Fact-Checking Hub/IBERIFIER/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.description.bibliographicCitation Giachanou, A.; Ghanem, BHH.; Rissola, EA.; Rosso, P.; Crestani, F.; Oberski, D. (2022). The Impact of Psycholinguistic Patterns in Discriminating between Fake News Spreaders and Fact Checkers. Data & Knowledge Engineering. 138:1-15. https://doi.org/10.1016/j.datak.2021.101960 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.datak.2021.101960 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 138 es_ES
dc.relation.pasarela S\488736 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder UNIVERSIDAD DE NAVARRA es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder Netherlands Organization for Scientific Research es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem