Mostrar el registro sencillo del ítem
dc.contributor.author | Broatch, A. | es_ES |
dc.contributor.author | Margot , Xandra | es_ES |
dc.contributor.author | GARCIA TISCAR, JORGE | es_ES |
dc.contributor.author | Escalona, Johan | es_ES |
dc.date.accessioned | 2023-09-21T06:50:55Z | |
dc.date.available | 2023-09-21T06:50:55Z | |
dc.date.issued | 2019-09-19 | es_ES |
dc.identifier.issn | 0148-7191 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/196846 | |
dc.description.abstract | [EN] New technologies are required to improve engine thermal efficiency. For this it is necessary to use all the tools available nowadays, in particular computational tools, which allow testing the viability of different solutions at reduced cost. In addition, numerical simulations often provide more complete and precise information than experimental tests. Such is the case for the study of the heat transfer through the walls of an engine. Conjugate Heat Transfer (CHT) simulations permit precise calculations of the heat transfer rate from gas to walls throughout the whole engine cycle, and thus it is possible to know such details as the instantaneous heat losses and wall temperature distribution on the walls, which no experiment can give. Nevertheless, it is important to validate CHT calculations, either with some experimental measurements or with some other reliable tool, such as 0D-1D modelling known to work well. The proposed work is based on the CHT simulation of the heat transfer to the walls of an engine piston during an entire cycle to determine the parameters that permit obtaining good results. This will be ascertained by comparison with the results of a lumped model previously validated for many applications. Another objective of this work is also to determine if it is significant to take into account the spatial and temporal variations of the wall temperature for the prediction of the heat losses during the engine cycle, as generally a mean and constant wall temperature (isothermal walls) is assumed for CFD combustion calculations. | es_ES |
dc.description.sponsorship | This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 724084. The authors wish to thank IFPEN for their permission to use their single cylinder engine geometry and pressure results. The authors want to express their gratitude to CONVERGENT SCIENCE Inc. and Convergent Science GmbH for their kind support for performing the CFD-CHT calculations using CONVERGE software. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | SAE International | es_ES |
dc.relation.ispartof | SAE Technical Paper | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.subject.classification | INGENIERIA AEROESPACIAL | es_ES |
dc.title | Validation and Analysis of Heat Losses Prediction Using Conjugate Heat Transfer Simulation for an Internal Combustion Engine | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4271/2019-24-0091 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/724084/EU | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny | es_ES |
dc.description.bibliographicCitation | Broatch, A.; Margot, X.; Garcia Tiscar, J.; Escalona, J. (2019). Validation and Analysis of Heat Losses Prediction Using Conjugate Heat Transfer Simulation for an Internal Combustion Engine. SAE International. 1-8. https://doi.org/10.4271/2019-24-0091 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | 14th International Conference on Engines and Vehicles (ICE 2019) | es_ES |
dc.relation.conferencedate | Septiembre 15-19,2019 | es_ES |
dc.relation.conferenceplace | Capri, Italy | es_ES |
dc.relation.publisherversion | https://doi.org/10.4271/2019-24-0091 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 8 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.pasarela | S\395761 | es_ES |
dc.contributor.funder | COMISION DE LAS COMUNIDADES EUROPEA | es_ES |
dc.description.references | Leguille, M., Ravet, F., Le Moine, J., Pomraning, E. et al. , “Coupled Fluid-Solid Simulation for the Prediction of Gas-Exposed Surface Temperature Distribution in a SI Engine,” SAE Technical Paper 2011-24-0132 , 2011, doi:104271/2011-24-0132. | es_ES |
dc.description.references | Mohammadi, A. and Yaghoubi, M. , “Estimation of Instantaneous Local Heat Transfer Coefficient in Spark-Ignition Engines,” International Journal of Thermal Sciences 49(7):1309-1317, 2010. | es_ES |
dc.description.references | Babajimopoulos, A., Assanis, D.N., Flowers, D.L., Aceves, S. M., and Hessel, R.P. , “A Fully Coupled Computational Fluid Dynamics and Multi-Zone Model with Detailed Chemical Kinetics for the Simulation of Premixed Charge Compression Ignition Engines,” International Journal of Engine Research 6(5):497-512, 2005. | es_ES |
dc.description.references | Fischer, M. and Jiang, X. , “Numerical Optimisation for Model Evaluation in Combustion Kinetics,” Applied Energy 156:793-803, 2015. | es_ES |
dc.description.references | Xin, J., Shih, S., Itano, E., and Maeda, Y. , “Integration of 3D Combustion Simulations and Conjugate Heat Transfer Analysis to Quantitatively Evaluate Component Temperatures,” SAE Technical Paper 2003-01-3128 , 2003, doi:10.4271/2003-01-3128. | es_ES |
dc.description.references | Iqbal, O., Arora, K., and Sanka, M. , “Thermal Map of an IC Engine Via Conjugate Heat Transfer: Validation and Test Data Correlation,” SAE International Journal of Engines 7(1):366-374, 2014. | es_ES |
dc.description.references | Lee, S. and Bae, C. , “Design of a Heat Exchanger to Reduce the Exhaust Temperature in a Spark-Ignition Engine,” International Journal of Thermal Sciences 47(4):468-478, 2008. | es_ES |
dc.description.references | Kashdan, J. and Bruneaux, G. , “Laser-Induced Phosphorenscence of Combustion Chamber Surface Temperature on a Single-Cylinder Diesel Engine,” SAE Technical Paper 2011-01-2049 , 2011, doi:10.4271/2011-01-2049. | es_ES |
dc.description.references | Knappe, C., Algotsson, M., Andersson, P., Richter, M. et al. , “Thickness Dependent Variations in Surface Phosphor Thermometry during Transient Combustion in an HCCI Engine,” Combustion and Flame 160(8):1466-1475, 2013. | es_ES |
dc.description.references | Torregrosa, A.J., Olmeda, P., Degraeuwe, B., and Reyes, M. , “A Concise Wall Temperature Model for Di Diesel Engines,” Applied Thermal Engineering 26(11-12):1320-1327, 2006. | es_ES |
dc.description.references | Torregrosa, A.J., Olmeda, P., Martín, J., and Romero, C. , “A Tool for Predicting the Thermal Performance of a Diesel Engine,” Heat Transfer Engineering 32(10):891-904, 2011. | es_ES |
dc.description.references | Kundu, P., Scarcelli, R., Som, S., Ickes, A. et al. , “Modeling Heat Loss through Pistons and Effect of Thermal Boundary Coatings in Diesel Engine Simulations Using a Conjugate Heat Transfer Model,” SAE Technical Paper 2016-01-2235 , 2016, doi:10.4271/2016-01-2235. | es_ES |
dc.description.references | Senecal, P.K., Pomraning, E., Anders, J., Weber, M. et al. , “Predictions of Transient Flame Lift-Off Length with Comparison to Single-Cylinder Optical Engine Experiments,” Journal of Engineering for Gas Turbines and Power 136(11):111505, 2014. | es_ES |
dc.description.references | Som, S., Longman, D., Aithal, S., Bair, R. et al. , “A Numerical Investigation on Scalability and Grid Convergence of Internal Combustion Engine Simulations,” SAE Technical Paper 2013-01-1095 , 2013, doi:10.4271/2013-01-1095. | es_ES |
dc.description.references | Pei, Y., Shan, R., Som, S., Lu, T. et al. , “Global Sensitivity Analysis of a Diesel Engine Simulation with Multi-Target Functions,” SAE Technical Paper 2014-01-1117 , 2014, doi:10.4271/2014-01-1117. | es_ES |
dc.description.references | Andruskiewicz, P., Najt, P., Durrett, R., Biesboer, S. et al. , “Analysis of the Effects of Wall Temperature Swing on Reciprocating Internal Combustion Engine Processes,” International Journal of Engine Research 19(4):461-473, 2018. | es_ES |
dc.description.references | Woschni, G., Spindler, W., and Kolesa, K. , “Heat Insulation of Combustion Chamber Walls-A Measure to Decrease the Fuel Consumption of IC Engines?” SAE Technical Paper 870339 , 1987, doi:10.4271/870339. | es_ES |
dc.description.references | Kosaka, H., Wakisaka, Y., Nomura, Y., Hotta, Y. et al. , “Concept of “Temperature Swing Heat Insulation” in Combustion Chamber Walls, and Appropriate Thermo-Physical Properties for Heat Insulation Coat,” SAE International Journal of Engines 6(1):142-149, 2013. | es_ES |
dc.description.references | Fukui, K., Wakisaka, Y., Nishikawa, K., Hattori, Y. et al. , “Development of Instantaneous Temperature Measurement Technique for Combustion Chamber Surface and Verification of Temperature Swing Concept,” SAE 2016 World Congress and Exhibition, SAE International, 2016. | es_ES |
dc.description.references | Hartmann, F., Buhl, S., Hasse, C., Krost, P., Henke, M., and Hübner, W. , “Erschließung von wirkungsgradpotentialen durch reduzierung der wärmeverluste mittels innovativer kolbenbeschichtungen,” in 16th Conference, The Working Process of the Internal Combustion Engines, Graz, September 2017. | es_ES |
dc.description.references | Broatch, A., Olmeda, P., Margot, X., and Gomez-Soriano, J. , “Numerical Simulations for Evaluating the Impact of Advanced Insulation Coatings on H2 Additivated Gasoline Lean Combustion in a Turbocharged Spark-Ignited Engine,” Applied Thermal Engineering 148:674-683, 2019. | es_ES |
dc.description.references | Broatch, A., Olmeda, P., Margot, X., and Escalona, J. , “New Approach to Study the Heat Transfer in Internal Combustion Engines by 3D Modelling,” International Journal of Thermal Sciences 138:405-415, 2018. | es_ES |
dc.description.references | Wiedenhoefer, J.F. and Reitz, R.D. , “A Multidimensional Radiation Model for Diesel Engine Simulation with Comparison to Experiment,” Numerical Heat Transfer Part A 44(7):665-682, 2003. | es_ES |
dc.description.references | Urip, E., Liew, K.H., and Yang, S.L. , “Modeling IC Engine Conjugate Heat Transfer Using the KIVA Code,” Numerical Heat Transfer, Part A: Applications 52(1):1-23, 2007. | es_ES |
dc.description.references | Li, Y. and Kong, S.-C. , “Coupling Conjugate Heat Transfer with In-Cylinder Combustion Modeling for Engine Simulation,” International Journal of Heat and Mass Transfer 54(11):2467-2478, 2011. | es_ES |
dc.description.references | Patil, M.M., Pise, A., and Gokhale, N. , “Simulation of Conjugate Heat Transfer (CHT) between Engine Head and Cooling Medium of Diesel Engine,” SAE Technical Paper 2015-01-1662 , 2015, doi:10.4271/2015-01-1662. | es_ES |
dc.description.references | Bejan, A. and Kraus, A.D. , Heat Transfer Handbook. Vol. 1 (John Wiley & Sons, 2003). | es_ES |
dc.description.references | Broatch, A., Margot, X., Novella, R., and Gomez-Soriano, J. , “Impact of the Injector Design on the Combustion Noise of Gasoline Partially Premixed Combustion in a 2-Stroke Engine,” Applied Thermal Engineering 119:530-540, 2017. | es_ES |
dc.description.references | Convergent Science Inc. , CONVERGE 2.2 Theory Manual. | es_ES |
dc.description.references | O’Rourke, P. and Amsden, A.A. , “A Particle Numerical Model for Wall Film Dynamics in Port-Injected Engines,” SAE Technical Paper 961961 , 1996, doi:10.4271961961. | es_ES |
dc.description.references | Amsden, A. , “KIVA-3V: A Block-Structured KIVA Program for Engines with Vertical or Canted Valves,” Los Alamos, National Laboratory, 1997. | es_ES |
dc.description.references | Torregrosa, A.J., Broatch, A., Olmeda, P., and Martín, J. , “A Contribution to Film Coefficient Estimation in Piston Cooling Galleries,” Experimental Thermal and Fluid Science 34(2):142-151, 2010. | es_ES |
dc.description.references | Olmeda, P., Dolz, V., Arnau, F., and Reyes-Belmonte, M. , “Determination of Heat Flows inside Turbochargers by Means of a One Dimensional Lumped Model,” Mathematical and Computer Modelling 57(7-8):1847-1852, 2013. | es_ES |
dc.description.references | Broatch, A., Olmeda, P., García, A., Salvador-Iborra, J., and Warey, A. , “Impact of Swirl on In-Cylinder Heat Transfer in a Light-Duty Diesel Engine,” Energy 119:1010-1023, 2017. | es_ES |
dc.description.references | Kikusato, A., Terahata, K., Jin, K., and Daisho, Y. , “A Numerical Simulation Study on Improving the Thermal Efficiency of a Spark Ignited Engine---Part 2: Predicting Instantaneous Combustion Chamber Wall Temperatures, Heat Losses and Knock,” SAE International Journal of Engines 7(1):87-95, 2014. | es_ES |