- -

An automated model for the assessment of QoE of adaptive video streaming over wireless networks

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

An automated model for the assessment of QoE of adaptive video streaming over wireless networks

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Taha, Miran es_ES
dc.contributor.author Ali, Aree es_ES
dc.contributor.author Lloret, Jaime es_ES
dc.contributor.author Gondim, Paulo R. L. es_ES
dc.contributor.author Canovas, Alejandro es_ES
dc.date.accessioned 2023-09-21T18:04:44Z
dc.date.available 2023-09-21T18:04:44Z
dc.date.issued 2021-07 es_ES
dc.identifier.issn 1380-7501 es_ES
dc.identifier.uri http://hdl.handle.net/10251/196897
dc.description.abstract [EN] Nowadays, heterogeneous devices are widely utilizing Hypertext Transfer Protocol (HTTP) to transfer the data. Furthermore, HTTP adaptive video streaming (HAS) technology transmits the video data over wired and wireless networks. In adaptive technology services, a client's application receives a streaming video through the adaptation of its quality to the network condition. However, such a technology has increased the demand for Quality of Experience (QoE) in terms of prediction and assessment. It can also cause a challenging behavior regarding subjective and objective QoE evaluations of HTTP adaptive video over time since each Quality of Service (QoS) parameter affects the QoE of end-users separately. This paper introduces a methodology design for the evaluation of subjective QoE in adaptive video streaming over wireless networks. Besides, some parameters are considered such as video characteristics, segment length, initial delay, switch strategy, stalls, as well as QoS parameters. The experiment's evaluation demonstrated that objective metrics can be mapped to the most significant subjective parameters for user's experience. The automated model could function to demonstrate the importance of correlation for network behaviors' parameters. Consequently, it directly influences the satisfaction of the end-user's perceptual quality. In comparison with other recent related works, the model provided a positive Pearson Correlation value. Simulated results give a better performance between objective Structural Similarity (SSIM) and subjective Mean Opinion Score (MOS) evaluation metrics for all video test samples. es_ES
dc.description.sponsorship This work has been partially supported by the "Ministerio de Economia y Competitividad" in the "Programa Estatal de Fomento de la Investigacion Cientifica y Tecnica de Excelencia, Subprograma Estatal de Generacion de Conocimiento" within the Project under Grant TIN2017-84802-C2-1-P. This study has been partially done in the computer science departments at the (University of Sulaimani and Halabja). es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Multimedia Tools and Applications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject HTTP adaptive streaming es_ES
dc.subject Correlation coefficient es_ES
dc.subject QoE es_ES
dc.subject QoS es_ES
dc.subject Subjective methodology es_ES
dc.subject.classification INGENIERÍA TELEMÁTICA es_ES
dc.title An automated model for the assessment of QoE of adaptive video streaming over wireless networks es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11042-021-10934-9 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-84802-C2-1-P/ES/RED COGNITIVA DEFINIDA POR SOFTWARE PARA OPTIMIZAR Y SECURIZAR TRAFICO DE INTERNET DE LAS COSAS CON INFORMACION CRITICA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Politécnica Superior de Gandia - Escola Politècnica Superior de Gandia es_ES
dc.description.bibliographicCitation Taha, M.; Ali, A.; Lloret, J.; Gondim, PRL.; Canovas, A. (2021). An automated model for the assessment of QoE of adaptive video streaming over wireless networks. Multimedia Tools and Applications. 80(17):26833-26854. https://doi.org/10.1007/s11042-021-10934-9 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s11042-021-10934-9 es_ES
dc.description.upvformatpinicio 26833 es_ES
dc.description.upvformatpfin 26854 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 80 es_ES
dc.description.issue 17 es_ES
dc.relation.pasarela S\473268 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Abar T, Letaifa AB, Elasmi S (2018) Enhancing QoE based on machine learning and DASH in SDN networks. 32nd International Conference on Advanced Information Networking and Applications Workshops (WAINA), IEEE, Krakow, Poland, pp. 258–263, https://doi.org/10.1109/WAINA.2018.00095 es_ES
dc.description.references Absolute Category Rating (ACR) ITU-R BT.500–12. Recommendation ITU-R BT.500-13Methodology for the subjective assessment of the quality of television pictures (Jan. 2012), [Accessed November 2019 Online] es_ES
dc.description.references Barman N, Martini MG (2019) QoE modeling for HTTP adaptive video streaming–a survey and open challenges. IEEE Access 7:30831–30859. https://doi.org/10.1109/ACCESS.2019.2901778 es_ES
dc.description.references Barman N, Zadtootaghaj S, Schmidt S, Martini MG, Möller S (2018) An objective and subjective quality assessment study of passive gaming video streaming. International Journal of Network Management, pp. e2054. DOI: https://doi.org/10.1002/nem.2054 es_ES
dc.description.references Barman N, Jammeh E, Ghorashi SA, Martini MG (2019) No-reference video quality estimation based on machine learning for passive gaming video streaming applications. IEEE Access 7:74511–74527. https://doi.org/10.1109/ACCESS.2019.2920477 es_ES
dc.description.references Bulkan U, Dagiuklas T (2019) Predicting quality of experience for online video service provisioning. Multimed Tools Appl 78(13):18787–18811. https://doi.org/10.1007/s11042-019-7164-9 es_ES
dc.description.references Chen Y, Wu K, Zhang Q (2014) From QoS to QoE: a tutorial on video quality assessment. IEEE Commun Surveys Tutorials 17(2):1126–1165. https://doi.org/10.1109/COMST.2014.2363139 es_ES
dc.description.references Chikkerur S, Sundaram V, Reisslein M, Karam LJ (2011) Objective video quality assessment methods: a classification, review, and performance comparison. IEEE Trans Broadcast 57(2):165–182. https://doi.org/10.1109/TBC.2011.2104671 es_ES
dc.description.references Cisco report, [Accessed November 2019 Online]: http://bit.ly/2gg1F6B es_ES
dc.description.references Claeys M, Latre S, Famaey J, De Turck F (2014) Design and evaluation of a self-learning HTTP adaptive video streaming client. IEEE Commun Lett 18(4):716–719. https://doi.org/10.1109/LCOMM.2014.020414.132649 es_ES
dc.description.references Cofano G, De Cicco L, Zinner T, Nguyen-Ngoc A, Tran-Gia P, Mascolo S (2016) Design and experimental evaluation of network-assisted strategies for HTTP adaptive streaming. In Proceedings of the 7th International Conference on Multimedia Systems, pp. 1–12. https://doi.org/10.1145/2910017.2910597 es_ES
dc.description.references Duanmu Z, Zeng K, Ma K, Rehman A, Wang Z (2016) A quality-of-experience index for streaming video. IEEE J Selected Topics Sign Process 11(1):154–166. https://doi.org/10.1109/10.1109/JSTSP.2016.2608329 es_ES
dc.description.references García L, Lloret J, Turro C, Taha M (2016) QoE assesment of MPEG-DASH in polimedia e-learning system. International Conference on Advances in Computing, Communications and Informatics (ICACCI), IEEE, pp. 1117–1123. DOI: https://doi.org/10.1109/ICACCI.2016.7732194 es_ES
dc.description.references García B, López-Fernández L, Gortázar F, Gallego M (2019) Practical Evaluation of VMAF Perceptual Video Quality for WebRTC Aepplications. Journal of Electronics, vol. 9, no. 2. https://doi.org/10.3390/electronics8080854 es_ES
dc.description.references Guan-MingSu XS, Bai Y, Wang M, Vasilakos AV, Wang H (2016) QoE in video streaming over wireless networks: perspectives and research challenges. Wirel Netw 22(5):1571–1593. https://doi.org/10.1007/s11276-015-1028-7 es_ES
dc.description.references Gutterman C, Guo K, Arora S, Wang X, Wu L, Katz-Bassett E, Zussman G (2019) Requet: Real-time QoE detection for encrypted YouTube traffic. In Proceedings of the 10th ACM Multimedia Systems Conference, pp. 48–59. https://doi.org/10.1145/3304109.3306226 es_ES
dc.description.references Huawei report, [Accessed December 2019 Online]: https://www.huawei.com/minisite/hwmbbf15/img/video_coverage_whitepaper_en.pdf. es_ES
dc.description.references ITU-T Rec. P.1203. (2017) Parametric bitstream-based quality assessment of progressive download and adaptive audiovisual streaming services over reliable transport. ITU-T Rec. P.1203 es_ES
dc.description.references Juluri P, Tamarapalli V, Medhi D (2015) Measurement of quality of experience of video-on-demand services: a survey. IEEE Commun Surveys Tutorials 18(1):401–418. https://doi.org/10.1109/COMST.2015.2401424 es_ES
dc.description.references Juluri P, Tamarapalli V, Medhi D (2016) Measurement of quality of experience of video-on-demand services: a survey. IEEE Commun Surveys Tutorials 18(1):401–418. https://doi.org/10.1109/COMST.2015.2401424 es_ES
dc.description.references Liu X, Nan Z, Richard Yu F, Chen Y, Tang J, Leung VCM (2018) Cooperative video transmission strategies via caching in small-cell networks. IEEE Trans Veh Technol 67(12):12204–12217. https://doi.org/10.1109/TVT.2018.2874258 es_ES
dc.description.references MingfuLi C-LY, Shao-Yu L (2018) Real-time QoE monitoring system for video streaming services with adaptive media playout. Int J Digital Multimed Broadcast 2018:1–11. https://doi.org/10.1155/2018/2619438 es_ES
dc.description.references Mok R, Luo X, Chan E, Chang R (2012) QDASH: A QoE-aware DASH system. Proceedings of the 3rd Multimedia Systems Conference, pp. 11–22. https://doi.org/10.1145/2155555.2155558 es_ES
dc.description.references Moorthy AK, Seshadrinathan K, Soundararajan R, Bovik AC (2010) Wireless video quality assessment: a study of subjective scores and objective algorithms. IEEE trans Circuits Syst Vid Technol 20(4):587–599. https://doi.org/10.1109/TCSVT.2010.2041829 es_ES
dc.description.references Nam H, Kim K-H, Schulzrinne H (2016) QoE matters more than QoS: Why people stop watching cat videos. In IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications, IEEE, pp. 1–9. https://doi.org/10.1109/INFOCOM.2016.7524426 es_ES
dc.description.references Nunome T, Mizutani K (2019) The joint effect of wireless LAN reliable groupcast and a rate-adaptation mechanism on QoE of audio and video transmission. in Proc. IEEE 26th International Conference on Telecommunications (ICT), IEEE, pp. 149–153. https://doi.org/10.1109/ICT.2019.8798643 es_ES
dc.description.references Nunome T, Tani H (2017) The effect of seeking operation on QoE of HTTP adaptive streaming services. Int J Comput Netw Commun (IJCNC) 9(2):1–18. https://doi.org/10.5121/ijcnc.2017.9201 es_ES
dc.description.references Orsolic I, Pevec D, Suznjevic M, Skorin-Kapov L (2017) A machine learning approach to classifying YouTube QoE based on encrypted network traffics. Multimed Tools Appl 76(21):22267–22301. https://doi.org/10.1007/s11042-017-4728-4 es_ES
dc.description.references Pal D, Vanijja V (2017) Effect of network QoS on user QoE for a mobile video streaming service using H. 265/VP9 codec. Proced Comput Sci 111:214–222. https://doi.org/10.1016/j.procs.2017.06.056 es_ES
dc.description.references Petrangeli S, Van Der Hooft J, Wauters T, De Turck F (2018) Quality of experience-centric management of adaptive video streaming services: status and challenges. ACM Trans Multimed Comput Commun Appl (TOMM) 14(2):1–29. https://doi.org/10.1145/3165266 es_ES
dc.description.references Poojary S, El-Azouzi R, Altman E, Sunny A, Triki I, Haddad M, Jimenez T, Valentin S, Tsilimantos D (2018) Analysis of QoE for adaptive video streaming over wireless networks. 16th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt), IEEE, pp. 1–8, https://doi.org/10.23919/WIOPT.2018.8362846 es_ES
dc.description.references Retal S, Bagaa M, Taleb T, Flinck H (2017) Content delivery network slicing: QoE and cost awareness. IEEE International Conference on Communications (ICC), IEEE, pp. 1–6, https://doi.org/10.1109/ICC.2017.7996499 es_ES
dc.description.references Rodrigues F, Sousa I, Queluz MP, Rodrigues A (2018) QoE-aware scheduling algorithm for adaptive HTTP video delivery in wireless networks. Wireless Communications and Mobile computing, vol. 2018. DIO: https://doi.org/10.1155/2018/9736360 es_ES
dc.description.references Schatz R, Sackl A, Timmerer C, Gardlo B (2017) Towards subjective quality of experience assessment for omnidirectional video streaming." Ninth International Conference on Quality of Multimedia Experience (QoMEX), IEEE, no. 6, pp. 1-, https://doi.org/10.1109/QoMEX.2017.7965657 es_ES
dc.description.references Seufert M, Egger S, Slanina M, Zinner T, Hoßfeld T, Tran-Gia P (2014) A survey on quality of experience of HTTP adaptive streaming. IEEE Commun Surveys Tutorials 17(1):469–492. https://doi.org/10.1109/COMST.2014.2360940 es_ES
dc.description.references Singh S, Andrews JG, de Veciana G (2012) Interference shaping for improved quality of experience for real-time video streaming. IEEE J Selected Areas Commun 30(7):1259–1269. https://doi.org/10.1109/JSAC.2012.120811 es_ES
dc.description.references Stensen JMG (2012) Evaluating QoS and QoE Dimensions in Adaptive Video Streaming. Master's thesis, Institutt for telematikk, https://doi.org/10.12142/ZTECOM.201901004 es_ES
dc.description.references Streijl RC, Winkler S, Hands DS (2016) Mean opinion score (MOS) revisited: methods and applications, limitations and alternatives. Multimedia Systems 22(2):213–227. https://doi.org/10.1007/s00530-014-0446-1 es_ES
dc.description.references Taha M (2016) A novel CDN testbed for fast deploying HTTP adaptive video streaming. Proceedings of the 9th EAI International Conference on Mobile Multimedia Communications, pp. 65–71. DOI: https://doi.org/10.4108/eai.18-6-2016.2264163 es_ES
dc.description.references Taha M, Lloret J, Ali A, Garcia L (2018) Adaptive video streaming testbed design for performance study and assessment of QoE. Int J Commun Syst 31(9):e3551. https://doi.org/10.1002/dac.3551 es_ES
dc.description.references Thang TC, Le HT, Nguyen HX, Pham AT, Kang JW, Ro YM (2013) Adaptive video streaming over HTTP with dynamic resource estimation. J Commun Netw 15(6):635–644. https://doi.org/10.1109/JCN.2013.000112 es_ES
dc.description.references Timmerer C, Zabrovskiy A (2019) Automating QoS and QoE Evaluation of HTTP Adaptive Streaming Systems. ZTE COMMUNICATIONS, vol. 17, no. 1 es_ES
dc.description.references Trakas P, Adelantado F, Zorba N, Verikoukis C (2017) A quality of experience-aware association algorithm for 5G heterogeneous networks. In 2017 IEEE International Conference on Communications (ICC), IEEE, pp. 1–6. DOI: https://doi.org/10.1109/ICC.2017.7996869 es_ES
dc.description.references Villa BJ, Heegaard PE (2012) Improving Fairness in QoS and QoE domains for Adaptive Video Streaming. International Journal on Advances in Networks and Services vol. 5, no. 3, pp. 4 es_ES
dc.description.references Qingyong Wang, Hong-Ning Dai, Di Wu, and Hong Xiao (2018) Data analysis on video streaming QoE over mobile networks. Eurasip J Wireless Commun Netw, no. 1, pp.173, https://doi.org/10.1186/s13638-018-1180-8 es_ES
dc.description.references Wenjing L, Yu P, Wang R, Lei F, Dong O, Xuesong Q (2017) Quality of experience evaluation of HTTP video streaming based on user interactive behaviors. J China Univ Posts Telecommun 24(3):24–32. https://doi.org/10.1016/S1005-8885(17)60208-5 es_ES
dc.description.references Xu Y, Zhou Y, Chiu D-M (2014) Analytical QoE models for bit-rate switching in dynamic adaptive streaming systems. IEEE Trans Mob Comput 13(12):2734–2748. https://doi.org/10.1109/TMC.2014.2307323 es_ES
dc.description.references Zeng H, Fang Y (2013) Implementation of video transcoding client based on FFMPEG. In Advanced Materials Research, vol. 756, Trans Tech Publications Ltd, pp. 1748–1752. 10.4028/www.scientific.net/AMR.756-759.1748 es_ES
dc.description.references Zhang W, Wen Y, Chen Z, Khisti A (2013) QoE-driven cache management for HTTP adaptive bit rate streaming over wireless networks. IEEE Trans Multimed 15(6):1431–1445. https://doi.org/10.1109/TMM.2013.2247583 es_ES
dc.description.references Zhao T, Liu Q, Chen CW (2016) QoE in video transmission: a user experience-driven strategy. IEEE Commun Surveys Tutorials 19(1):285–302. https://doi.org/10.1109/COMST.2016.2619982 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem