- -

Genome wide association mapping for agronomic, fruit quality, and root architectural traits in tomato under organic farming conditions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Genome wide association mapping for agronomic, fruit quality, and root architectural traits in tomato under organic farming conditions

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Tripodi, Pasquale es_ES
dc.contributor.author Soler Aleixandre, Salvador es_ES
dc.contributor.author Campanelli, Gabriele es_ES
dc.contributor.author Díez Niclós, Mª José Teresa De Jesús es_ES
dc.contributor.author Esposito, Salvatore es_ES
dc.contributor.author Sestili, Sara es_ES
dc.contributor.author Figás-Moreno, María Del Rosario es_ES
dc.contributor.author Leteo, Fabrizio es_ES
dc.contributor.author Casanova-Calancha, Cristina es_ES
dc.contributor.author Platani, Cristiano es_ES
dc.contributor.author Soler-Calabuig, Elena es_ES
dc.contributor.author Bertone, Aldo es_ES
dc.contributor.author Pereira-Dias, Leandro es_ES
dc.contributor.author Palma, Daniela es_ES
dc.contributor.author Burguet, Resurrección es_ES
dc.contributor.author Pepe, Andrea es_ES
dc.contributor.author Rosa-Martínez, Elena es_ES
dc.contributor.author Prohens Tomás, Jaime es_ES
dc.contributor.author Cardi, Teodoro es_ES
dc.date.accessioned 2023-09-21T18:05:12Z
dc.date.available 2023-09-21T18:05:12Z
dc.date.issued 2021-10-22 es_ES
dc.identifier.issn 1471-2229 es_ES
dc.identifier.uri http://hdl.handle.net/10251/196906
dc.description.abstract [EN] Background Opportunity and challenges of the agriculture scenario of the next decades will face increasing demand for secure food through approaches able to minimize the input to cultivations. Large panels of tomato varieties represent a valuable resource of traits of interest under sustainable cultivation systems and for genome-wide association studies (GWAS). For mapping loci controlling the variation of agronomic, fruit quality, and root architecture traits, we used a heterogeneous set of 244 traditional and improved tomato accessions grown under organic field trials. Here we report comprehensive phenotyping and GWAS using over 37,300 SNPs obtained through double digest restriction-site associated DNA (dd-RADseq). Results A wide range of phenotypic diversity was observed in the studied collection, with highly significant differences encountered for most traits. A variable level of heritability was observed with values up to 69% for morphological traits while, among agronomic ones, fruit weight showed values above 80%. Genotype by environment analysis highlighted the strongest genotypic effect for aboveground traits compared to root architecture, suggesting that the hypogeal part of tomato plants has been a minor objective for breeding activities. GWAS was performed by a compressed mixed linear model leading to 59 significantly associated loci, allowing the identification of novel genes related to flower and fruit characteristics. Most genomic associations fell into the region surrounding SUN, OVATE, and MYB gene families. Six flower and fruit traits were associated with a single member of the SUN family (SLSUN31) on chromosome 11, in a region involved in the increase of fruit weight, locules number, and fruit fasciation. Furthermore, additional candidate genes for soluble solids content, fruit colour and shape were found near previously reported chromosomal regions, indicating the presence of synergic and multiple linked genes underlying the variation of these traits. Conclusions Results of this study give new hints on the genetic basis of traits in underexplored germplasm grown under organic conditions, providing a framework for the development of markers linked to candidate genes of interest to be used in genomics-assisted breeding in tomato, in particular under low-input and organic cultivation conditions. es_ES
dc.description.sponsorship This research was supported by the European Union Horizon 2020 Research and Innovation program for funding this research under grant agreement No 774244 (Breeding for Resilient, Efficient and Sustainable Organic Vegetable Production; BRESOV) and by 'RGV-FAO'project funded by the Italian Ministry of Agriculture, Food and Forestry. The funding bodies were not involved in the design of the study, collection, analysis, and interpretation of data, and in writing the manuscript. es_ES
dc.language Inglés es_ES
dc.publisher Springer (Biomed Central Ltd.) es_ES
dc.relation.ispartof BMC Plant Biology es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Tomato es_ES
dc.subject Phenotyping es_ES
dc.subject Genome-wide association mapping es_ES
dc.subject Organic farming es_ES
dc.subject Genotype by environment es_ES
dc.subject.classification GENETICA es_ES
dc.title Genome wide association mapping for agronomic, fruit quality, and root architectural traits in tomato under organic farming conditions es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1186/s12870-021-03271-4 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/774244/EU es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana es_ES
dc.description.bibliographicCitation Tripodi, P.; Soler Aleixandre, S.; Campanelli, G.; Díez Niclós, MJTDJ.; Esposito, S.; Sestili, S.; Figás-Moreno, MDR.... (2021). Genome wide association mapping for agronomic, fruit quality, and root architectural traits in tomato under organic farming conditions. BMC Plant Biology. 21(1):1-22. https://doi.org/10.1186/s12870-021-03271-4 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1186/s12870-021-03271-4 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 22 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 21 es_ES
dc.description.issue 1 es_ES
dc.identifier.pmid 34686145 es_ES
dc.identifier.pmcid PMC8532347 es_ES
dc.relation.pasarela S\461422 es_ES
dc.contributor.funder COMISION DE LAS COMUNIDADES EUROPEA es_ES
dc.contributor.funder Ministero delle Politiche Agricole, Alimentari e Forestali es_ES
dc.description.references Anderson R, Bayer PE, Edwards D. Climate change and the need for agricultural adaptation. Curr Opin Plant Biol. 2020;56:197–202. es_ES
dc.description.references Le Campion A, Oury FX, Heumez E, Rolland B. Conventional versus organic farming systems: dissecting comparisons to improve cereal organic breeding strategies. Org Agr. 2020;10:63–74. es_ES
dc.description.references The World of Organic Agriculture In: Statistics Sessions at BIOFACH 2020 Nürnberg, Germany. 2020. https://www.organic-world.net/yearbook/yearbook-2020.html. Accessed 20 June 2021. es_ES
dc.description.references FAOSTAT 2019. http://www.fao.org/faostat/en/#home. Accessed 20 June 2021. es_ES
dc.description.references Higashide T, Heuvelink E. Physiological and morphological changes over the past 50 years in yield components in tomato. J Am Soc Hortic Sci. 2009;134:460–5. es_ES
dc.description.references Lammerts van Bueren ET, Backes G, de Vriend H, Østergård H. The role of molecular markers and marker assisted selection in breeding for organic agriculture. Euphytica. 2010;175:51–64. es_ES
dc.description.references Pérez-Caselles C, Brugarolas M, Martínez-Carrasco L. Traditional varieties for local markets: a sustainable proposal for agricultural SMEs. Sustain. 2020;12:1–19. es_ES
dc.description.references Pham B, McConnaughay KÌ. Plant phenotypic expression in variable environments. In: Monson R, editor. Ecology and the environment. The plant sciences, vol. 8. New York: Springer; 2014. https://doi.org/10.1007/978-1-4614-7501-9_16. es_ES
dc.description.references Barrios-Masias FH, Jackson LE. California processing tomatoes: morphological, physiological and phenological traits associated with crop improvement during the last 80 years. Eur J Agron. 2014;53:45–55. es_ES
dc.description.references Cortes LT, Zhang Z, Yu J. Status and prospects of genome-wide association studies in plants. Plant Genome. 2021;14:1–17. es_ES
dc.description.references Wang M, Jiang N, Jia T, Leach L, Cockram J, Waugh R, et al. Genome-wide association mapping of agronomic and morphologic traits in highly structured population of barley cultivars. Theor Appl Genet. 2012;124:233–46. es_ES
dc.description.references Runcie DE, Crawford L. Fast and flexible linear mixed models for genomewide genetics. PLoS Genet. 2019;15(2):e1007978. es_ES
dc.description.references Zhang Z, Ersoz E, Lai CQ, Todhunter RJ, Tiwari HK, et al. Mixed linear model approach adapted for genome-wide association studies. Nat Genet. 2010;42:355–60. es_ES
dc.description.references Ruggieri V, Francese G, Sacco A, D'Alessandro A, Manuela M, Parisi MG, et al. An association mapping approach to identify favoruable alleles for tomato fruit quality breeding. BMC Plant Biol. 2014;14:337. es_ES
dc.description.references Sauvage C, Segura V, Bauchet G, Stevens R, Thi Do P, Nikoloski Z, et al. Genome wide association in tomato reveals 44 candidate loci for fruit metabolic traits. Plant Physiol. 2014;165:1120–32. es_ES
dc.description.references Zhao J, Sauvage C, Zhao J, et al. Meta-analysis of genome-wide association studies provides insights into genetic control of tomato flavor. Nat Commun. 2019;10:1534. https://doi.org/10.1038/s41467-019-09462-w. es_ES
dc.description.references Bauchet G, Grenier S, Samson N, Bonnet J, Grivet L, Causse M. Use of modern tomato breeding germplasm for deciphering the genetic control of agronomical traits by genome wide association study. Theor Appl Genet. 2017;130(5):875–89. es_ES
dc.description.references Mata-Nicolás E, Montero-Pau J, Gimeno-Paez E, et al. Exploiting the diversity of tomato: the development of a phenotypically and genetically detailed germplasm collection. Hortic Res. 2020;7:66. es_ES
dc.description.references Rodriguez M, Scintu A, Posadinu CM, Xu Y, Nguyen CV, Sun H, et al. GWAS based on RNA-Seq SNPs and high-throughput Phenotyping combined with climatic data highlights the reservoir of valuable genetic diversity in regional tomato landraces. Genes. 2020;23:1387. https://doi.org/10.3390/genes11111387. es_ES
dc.description.references White PJ, George TS, Gregory PJ, Bengough AG, Hallett PD, McKenzie BM. Matching roots to their environment. Ann Bot. 2013;112:207–22. es_ES
dc.description.references Wang K, Ding Y, Cai C, Chen Z, Zhu C. The role of C2H2 zinc finger proteins in plant responses to abiotic stresses. Physiol Plant. 2018. https://doi.org/10.1111/ppl.12728. es_ES
dc.description.references Kieber JJ, Schaller GE. Cytokinin signaling in plant development. Development. 2018;478:337–42. es_ES
dc.description.references Tieman D, Zhu G, Resende M Jr, Lin T, Nguyen C, Bies D, et al. A chemical genetic roadmap to improved tomato flavor. Science. 2017;355:391–4. es_ES
dc.description.references Foolad MR. Panthee DR marker-assisted selection in tomato breeding. Crit Rev Plant Sci. 2012;31:93–123. es_ES
dc.description.references Eurostat. 2020. https://ec.europa.eu/eurostat/statistics-explained/index.php/Organic_farming_statistics. Accessed 20 June 2021. es_ES
dc.description.references Röös E, Mie A, Wivstad M, Salomon E, Johansson B, Gunnarsson S, et al. Risks and opportunities of increasing yields in organic farming. A review. Agron Sustain Dev. 2018;38:331. es_ES
dc.description.references Bai Y, Lindhout P. Domestication and breeding of tomatoes: what have we gained and what can we gain in the future? Ann Bot. 2007;100:1085–94. es_ES
dc.description.references Falconer DS. Introduction to Quantitative Genetics, Ed. 3. Harlow, Essex, UK/New York: Longmans Green/John Wiley & Sons; 1989. es_ES
dc.description.references Li DD, Mou WS, Wang YS, Li L, Mao LC, Ying TJ, et al. Exogenous sucrose treatment accelerates postharvest tomato fruit ripening through the influence on its metabolism and enhancing ethylene biosynthesis and signaling. Acta Physiol Plant. 2016;38:225. https://doi.org/10.1007/s11738-016-2240-5. es_ES
dc.description.references Beckles DM. Factors affecting the postharvest soluble solids and sugar content of tomato (Solanum lycopersicum) fruit. Postharvest Biol Tec. 2012;63:129–40. es_ES
dc.description.references Vijayakumar A, Shaji S, Beena R, Sarada S, Sajitha Rani T, Stephen R, et al. High temperature induced changes in quality and yield parameters of tomato (Solanum lycopersicum L.) and similarity coefficients among genotypes using SSR markers. Heliyon. 2021;7:e05988. es_ES
dc.description.references Esposito S, Cardi T, Campanelli G, et al. ddRAD sequencing-based genotyping for population structure analysis in cultivated tomato provides new insights into the genomic diversity of Mediterranean ‘da serbo’ type long shelf-life germplasm. Hortic Res. 2020;7:134. https://doi.org/10.1038/s41438-020-00353-6. es_ES
dc.description.references Skotte L, Korneliussen TS, Albrechtsen A. Estimating individual admixture proportions from next generation sequencing data. Genetics. 2013;195:693–702. https://doi.org/10.1534/genetics.113.154138. es_ES
dc.description.references Schouten HJ, Tikunov Y, Verkerke W, Finkers R, Bovy A, Bai Y, et al. Breeding has increased the diversity of cultivated tomato in the Netherlands. Front Plant Sci. 2019;10:1606. https://doi.org/10.3389/fpls.2019.0160. es_ES
dc.description.references Nyholt DR. A simple correction for multiple testing for single-nucleotide polymorphisms in linkage disequilibrium with each other. Am J Hum Genet. 2004;74:765–9. es_ES
dc.description.references Carmel-Goren L, Liu YS, Lifschitz E, Zamir D. The SELFPRUNING gene family in tomato. Plant Mol Biol. 2003;52:1215–22. es_ES
dc.description.references Rodríguez G.R, Kim HJ, van der Knaap E. Mapping of two suppressors of OVATE (sov) loci in tomato. Heredity 2013;111, 256–264. es_ES
dc.description.references Huang Z, Van Houten J, Gonzalez G, Xiao H, van der Knaap E. Genome-wide identification, phylogeny and expression analysis of SUN, OFP and YABBY gene family in tomato. Mol Gen Genomics. 2013;288:111–29. es_ES
dc.description.references Sacco A, Ruggieri V, Parisi M, Festa G, Rigano MM, Picarella ME, et al. Exploring a tomato landraces collection for fruitrelated traits by the aid of a high-throughput genomic platform. PLoS One. 2015;10(9):e0137139. https://doi.org/10.1371/journalpone.0137139. es_ES
dc.description.references Mu Q, Huang Z, Chakrabarti M, Illa-Berenguer E, Liu X, Wang Y, et al. Fruit weight is controlled by cell size regulator encoding a novel protein that is expressed in maturing tomato fruits. PLoS Genet. 2017;13:e1006930. es_ES
dc.description.references Xu C, Liberatore KL, MacAlister CA, et al. A cascade of arabinosyl transferases controls shoot meristem size in tomato. Nat Genet. 2015;47:784–92. es_ES
dc.description.references Razifard H, Ramos A, Della Valle AL, et al. Genomic evidence for complex domestication history of the cultivated tomato in Latin America. Mol Biol Evol. 2020;37:1118–32. es_ES
dc.description.references Lin T, Zhu G, Zhang J, Xu X, Yu Q, Zheng Z, et al. Genomic analyses provide insights into the history of tomato breeding. Nat Genet. 2014;46:1220–6. es_ES
dc.description.references Grandillo S, Ku HM, Tanksley SD. Identifying the loci responsible for natural variation in fruit size and shape in tomato. Theor Appl Genet. 1999;99:978–87. es_ES
dc.description.references Causse M, Duffe P, Gomez MC, Buret M, Damidaux R, Zamir D, et al. A genetic map of candidate genes and QTLs involved in tomato fruit size and composition. J Exp Bot. 2004;55(403):1671–85. es_ES
dc.description.references Ku HM, Grandillo S, Tanksley SD. fs8.1 a major QTL sets the pattern of tomato carpel shape well before anthesis. Theor Appl Genet. 2000;101:873–8. es_ES
dc.description.references Sun L, Rodriguez GR, Clevenger JP, Illa-Berenguer E, Lin J, Blakeslee JJ, et al. Candidate gene selection and detailed morphological evaluations of fs8.1, a quantitative trait locus controlling tomato fruit shape. J Exp Bot. 2015;66:6471–82. es_ES
dc.description.references Frary A, Fulton TM, Zamir D, Tanksley SD. Advanced backcross QTL analysis of a Lycopersicon esculentum X L. pennellii cross and identification of possible orthologs in the Solanaceae. Theor Appl Genet. 2004;108:485–96. es_ES
dc.description.references Ye J, Li WF, Ai G, Li CX, Liu GZ, Chen WF, et al. Genome-wide association analysis identifies a natural variation in basic helix-loop-helix transcription factor regulating ascorbate biosynthesis via D-mannose/L-galactose pathway in tomato. PLoS Genet. 2019;15(5):e1008149 pmid: 31067226. es_ES
dc.description.references Albert E, Segura V, Gricourt J, Bonnefoi J, Derivot L, Causse M. Association mapping reveals the genetic architecture of tomato response to water deficit: focus on major fruit quality traits. J Exp Bot. 2016;67:6413–30. es_ES
dc.description.references Pascual L, Albert E, Sauvage C, Duangjit J, Bouchet JP, Bitton F, et al. Dissecting quantitative trait variation in the resequencing era: complementarity of bi-parental, multi-parental and association panels. Plant Sci. 2016;242:120–30. es_ES
dc.description.references Lecomte L, Duffe P, Buret M, Servin B, Hospital F, Causse M. Marker-assisted introgression of five QTLs controlling fruit quality traits into three tomato lines revealed interactions between QTLs and genetic backgrounds. Theor Appl Genet. 2004;109:658–68. es_ES
dc.description.references Ranc N, Muños S, Xu J, Le Paslier MC, Chauveau A, Bounon R, et al. Genome-wide association mapping in tomato (Solanum lycopersicum) is possible using genome admixture of Solanum lycopersicum var. cerasiforme. G3. 2012;2:853–64. es_ES
dc.description.references Ballester AR, Molthoff J, de Vos R. Biochemical molecular analysis of pink tomatoes, deregulated expression of the gene encoding transcription factor SlMYB12 leads to pink tomato fruit color. Plant Physiol. 2010;152:71–84 pmid: 19906891. es_ES
dc.description.references Chen LQ. SWEET sugar transporters for phloem transport and pathogen nutrition. New Phytol. 2014;201:1150–5. es_ES
dc.description.references Campanelli G, Canali S. Crop production an environmental effects in conventional and organic vegetable farming systems: the case of a long-term experiment in Mediterranean conditions (Central Italy). J Sustain Agric. 2012;36(6):599–619. es_ES
dc.description.references Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945–59. es_ES
dc.description.references Hammer Ø, Harper DAT, Ryan PD. PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron. 2001;4:9. es_ES
dc.description.references Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience. 2015;4:7. es_ES
dc.description.references Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics. 2007;23(19):2633–5. es_ES
dc.subject.ods 02.- Poner fin al hambre, conseguir la seguridad alimentaria y una mejor nutrición, y promover la agricultura sostenible es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem