- -

Characterizations of quasi-metric and G-metric completeness involving w-distances and fixed points

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Characterizations of quasi-metric and G-metric completeness involving w-distances and fixed points

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Karapinar, Erdal es_ES
dc.contributor.author Romaguera Bonilla, Salvador es_ES
dc.contributor.author Tirado Peláez, Pedro es_ES
dc.date.accessioned 2023-09-21T18:05:41Z
dc.date.available 2023-09-21T18:05:41Z
dc.date.issued 2022-12-13 es_ES
dc.identifier.uri http://hdl.handle.net/10251/196916
dc.description.abstract [EN] Involving w-distances we prove a fixed point theorem of Caristi-type in the realm of (non -necessarily T-1) quasi-metric spaces. With the help of this result, a characterization of quasi-metric completeness is obtained. Our approach allows us to retrieve several key examples occurring in various fields of mathematics and computer science and that are modeled as non-T-1 quasi-metric spaces. As an application, we deduce a characterization of complete G-metric spaces in terms of a weak version of Caristi's theorem that involves a G-metric version of w-distances. es_ES
dc.language Inglés es_ES
dc.publisher De Gruyter Open es_ES
dc.relation.ispartof Demonstratio Mathematica (Online) es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Quasi-metric es_ES
dc.subject Complete es_ES
dc.subject W-distance es_ES
dc.subject Fixed point es_ES
dc.subject G-metric es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Characterizations of quasi-metric and G-metric completeness involving w-distances and fixed points es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1515/dema-2022-0177 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.description.bibliographicCitation Karapinar, E.; Romaguera Bonilla, S.; Tirado Peláez, P. (2022). Characterizations of quasi-metric and G-metric completeness involving w-distances and fixed points. Demonstratio Mathematica (Online). 55(1):939-951. https://doi.org/10.1515/dema-2022-0177 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1515/dema-2022-0177 es_ES
dc.description.upvformatpinicio 939 es_ES
dc.description.upvformatpfin 951 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 55 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 2391-4661 es_ES
dc.relation.pasarela S\481339 es_ES
dc.description.references J. Caristi, Fixed point theorems for mappings satisfying inwardness conditions, Trans. Am. Math. Soc. 215 (1976), 241–251. es_ES
dc.description.references A. W. Kirk, Caristi’s fixed point theorem and metric convexity, Colloq. Math. 36 (1976), 81–86. es_ES
dc.description.references H. K. Pathak, An Introduction to Nonlinear Analysis and Fixed Point Theory, Springer, Singapore, 2018. es_ES
dc.description.references F. Khojasteh, E. Karapınar, and H. Khandani, Some applications of Caristi’s fixed point theorem in metric spaces, Fixed Point Theory Appl. 2016 (2016), 16. es_ES
dc.description.references S. Romaguera and P. Tirado, A characterization of Smyth complete quasi-metric spaces via Caristi’s fixed point theorem, Fixed Point Theory Appl. 2015 (2015), 183. es_ES
dc.description.references I. Ekeland, Sur les problèmes variationnels, CR Acad. Sci. Paris 275 (1972), 1057–1059. es_ES
dc.description.references I. Ekeland, On the variational principle, J. Math. Anal. Appl. 47 (1974), 324–353. es_ES
dc.description.references C. Gutiérrez, G. Kassay, V. Novo, and J. L. Ródenas-Pedregosa, Ekeland variational principles in vector equilibrium problems, SIAM J. Optim. 27 (2017), 2405–2425. es_ES
dc.description.references E. Hashemi, R. Saadati, and C. Park, Generalized Ekeland’s variational principle with applications, J. Inequal. Appl. 2019 (2019), 250. es_ES
dc.description.references C. L. Zhang and N. J. Huang, On Ekeland’s variational principle for interval-valued functions with applications, Fuzzy Sets Syst. 436 (2022), 152–174. es_ES
dc.description.references M. Bota, A. Molnár, and C. Varga, On Ekeland’s variational principle in b-metric spaces, Fixed Point Theory 12 (2011), 21–28. es_ES
dc.description.references W. Kirk and N. Shahzad, Fixed Point Theory in Distance Spaces, Springer, Cham, 2014. es_ES
dc.description.references N. V. Dung and V. T. L. Hang, On relaxations of contraction constants and Caristi’s theorem in b-metric spaces, J. Fixed Point Theory Appl. 18 (2016), 267–284. es_ES
dc.description.references R. Miculescu and A. Mihail, Caristi-Kirk Type and Boyd and Wong-Browder-Matkowski-Rus type fixed point results in b-metric spaces, Filomat. 31 (2017), no., 4331–4340. es_ES
dc.description.references E. Karapınar, F. Khojasteh, and Z. D. Mitrović, A proposal for revisiting Banach and Caristi type theorems in b-metric spaces, Mathematics 7 (2019), 308. es_ES
dc.description.references S. Romaguera, On the correlation between Banach contraction principle and Caristi’s fixed point theorem in b-metric spaces, Mathematics 10 (2022), 136. es_ES
dc.description.references M. Abbas, B. Ali, and S. Romaguera, Multivalued Caristi’s type mappings in fuzzy metric spaces and a characterization of fuzzy metric completeness, Filomat 29 (2015), 1217–1222. es_ES
dc.description.references J. R. Jachymski, Caristi’s fixed point theorem and selections of set-valued contractions, J. Math. Anal. Appl. 227 (1998), 55–67. es_ES
dc.description.references W. Kirk, Metric fixed point theory: a brief retrospective, Fixed Point Theory Appl. 2015 (2015), 215. es_ES
dc.description.references M. A. Khamsi, Introduction to metric fixed point theory, In: Topics in Fixed Point Theory, S. Almezel, Q. H. Ansari, and M. A. Khamsi, Eds., Springer, New York-Heidelberg-Dordrecht-London, 2014, pp. 1–32. es_ES
dc.description.references M. A. Khamsi and W. M. Kozlowski, Fixed Point Theory in Modular Function Spaces, Birkhauser, Springer, Basel, Switzerland, 2015. es_ES
dc.description.references W. M. Kozlowski, A purely metric proof of Caristi’s fixed point theorem, Bull. Aust. Math. Soc. 95 (2017), 333–337. es_ES
dc.description.references O. Kada, T. Suzuki, and W. Tahakaski, Nonconvex minimization theorems and fixed point theorems in complete metric spaces, Math. Japon. 44 (1996), 381–391. es_ES
dc.description.references S. Romaguera, A Kirk type characterization of completeness for partial metric spaces, Fixed Point Theory Appl. 2010 (2010), Article ID 493298. es_ES
dc.description.references W-S. Du, A simple proof of Caristi’s fixed point theorem without using Zorn’s lemma and transfinite induction, Thai J. Math. 14 (2016), 259–264. es_ES
dc.description.references E. Karapınar and S. Romaguera, On the weak form of Ekeland’s Variational Principle in quasi-metric spaces, Topol. Appl. 184 (2015), 54–60. es_ES
dc.description.references K. Darko, H. Lakzian, and V. Rakočević, Ćirić’s and Fisher’s quasi-contractions in the framework of wt-distance, Rend. Circ. Mat. Palermo, II. Ser (2021). https://doi.org/10.1007/s12215-021-00684-w. es_ES
dc.description.references L. B. Ćirić, On Sehgal’s map with a contractive iterate at a point, Publ. Inst. Math. 33 (1983), 59–62. es_ES
dc.description.references D. Kocev, E. Karapınar, and V. Rakočević, On quasi-contraction mappings of Ćirić and Fisher type via w-distance, Quaest. Math. 42 (2019), 1–14. es_ES
dc.description.references E. Karapınar, Z. D. Mitrović, A. Öztürk, and S. Radenović, On a theorem of Ćirić in b-metric spaces, Rend. Circ. Mat. Palermo Ser. II 70 (2020), 217–225. es_ES
dc.description.references J. Marín, S. Romaguera, and P. Tirado, Q-Functions on quasimetric spaces and fixed points for multivalued maps, Fixed Point Theory Appl. 2011, 2011, Article ID 603861. es_ES
dc.description.references E. Karapınar, S. Romaguera, and P. Tirado, Contractive multivalued maps in terms of Q-functions on complete quasimetric spaces, Fixed Point Theory Appl. 2014 (2014), 53. es_ES
dc.description.references S. Cobzaş, Functional Analysis in Asymmetric Normed Spaces, Birkhaüser/Springer, Basel, Switzerland, 2013. es_ES
dc.description.references R. Engelking, General Topology, 2nd Edition, Sigma Series Pure Math., Heldermann Verlag, Berlin, 1989. es_ES
dc.description.references A. Mainik and A. Mielke, Existence results for energetic models for rate-independent systems, Calc. Var. 22 (2005), 73–99. es_ES
dc.description.references S. G. Matthews, Partial metric topology, In: Proceedings of the 8th Summer Conference on General Topology and Applications, Annals of the New York Academy of Sciences, vol. 728 1994, pp. 183–197. es_ES
dc.description.references M. Schellekens, The Smyth completion: A common foundation for denotational semantics and complexity analysis, Electronic Notes Theoret. Comput. Sci. 1 (1995), 535–556. es_ES
dc.description.references S. Romaguera and M. Schellekens, Quasi-metric properties of complexity spaces, Topology Appl. 98 (1999), 311–322. es_ES
dc.description.references S. Romaguera and O. Valero, Domain theoretic characterisations of quasi-metric completeness in terms of formal balls, Math. Struct. Comput. Sci. 20 (2010), 453–472. es_ES
dc.description.references J. Goubault-Larrecq, Non-Hausdorff Topology Non-Hausdorff topology and domain theory, New Mathematical Monographs, vol. 22, Cambridge University Press, Cambridge, 2013. es_ES
dc.description.references S. Park, On generalizations of the Ekeland-type variational principles, Nonlinear Anal. 39 (2000), 881–889. es_ES
dc.description.references S. Al-Homidan, Q. H. Ansari, and J. C. Yao, Some generalizations of Ekeland-type variational principle with applications to equilibrium problems and fixed point theory Nonlinear Anal. TMA 69 (2008), 126–139. es_ES
dc.description.references I. L. Reilly, P. V. Subrahmanyam, and M. K. Vamanamurthy, Cauchy sequences in quasi-pseudo-metric space, Mh. Math. 93 (1982), 127–140. es_ES
dc.description.references S. Romaguera and O. Valero, On the structure of the space of complexity partial functions, Int. J. Comput. Math. 85 (2008), 631–640. es_ES
dc.description.references S. Romaguera, M. P. Schellekens, and O. Valero, The complexity space of partial functions: a connection between complexity analysis and denotational semantics, Int. J. Comput. Math. 88 (2011), 1819–1829. es_ES
dc.description.references S. Cobza̧s, Completeness in quasi-metric spaces and Ekeland variational principle, Topol. Appl. 158 (2011), 1073–1084. es_ES
dc.description.references Z. Mustafa and B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal. 7 (2006), 289–297. es_ES
dc.description.references R. P. Agarwal and E. Karapınar, Remarks on some coupled fixed point theorems in G-metric spaces, Fixed Point Theory Appl. 2013 (2013), 2. es_ES
dc.description.references R. P. Agarwal, E. Karapınar, D. O’Regan, and A. F. Roldán-López-de-Hierro, Fixed Point Theory in Metric Type Spaces, Springer, Cham Heidelberg New York Dordrecht London, 2015. es_ES
dc.description.references R. P. Agarwal, E. Karapınar, and A. F. Roldán-López-de-Hierro, Fixed point theorems in quasimetric spaces and applications to multidimensional fixed points on G-metric spaces, J. Nonlinear Convex Anal. 16 (2015), 1787–1816. es_ES
dc.description.references R. P. Agarwal, E. Karapınar, and A. F. Roldán-López-de-Hierro, Last remarks on G-metric spaces and fixed point theorems, RACSAM-Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 110 (2016), 433–456. es_ES
dc.description.references T. V. An, N. V. Dung, and V. T. L. Hang, A new approach to fixed point theorems on G-metric spaces, Topol. Appl. 160 (2013), 1486–1493. es_ES
dc.description.references E. Karapınar, A. F. Roldán-López-de-Hierro, and B. Samet, Matkowski theorems in the context of quasi-metric spaces and consequences on G-metric spaces, Analele Stiint. ale Univ. Ovidius Constanta Ser. Mat. 24 (2016), 309–333. es_ES
dc.description.references Z. Mustafa and B. Sims, Fixed point theorems for contractive mappings in complete G-metric spaces, Fixed Point Theory Appl. 2009 (2009), 10. es_ES
dc.description.references S. Romaguera and P. Tirado, Fixed point theorems that characterize completeness of G-metric spaces, J. Nonlinear Convex Anal. 23 (2022), 1525–1536. es_ES
dc.description.references R. Saadati, S. M. Vaezpour, P. Vetro, and B. E. Rhoades, Fixed point theorems in generalized partially ordered G-metric spaces, Math. Comput. Model. 52 (2010), 797–801. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem