- -

Predicting the Uniaxial Compressive Strength of a Limestone Exposed to High Temperatures by Point Load and Leeb Rebound Hardness Testing

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Predicting the Uniaxial Compressive Strength of a Limestone Exposed to High Temperatures by Point Load and Leeb Rebound Hardness Testing

Mostrar el registro completo del ítem

Garrido De La Torre, ME.; Petnga, FB.; Martínez Ibáñez, V.; Serón Gáñez, JB.; Hidalgo Signes, C.; Tomás, R. (2021). Predicting the Uniaxial Compressive Strength of a Limestone Exposed to High Temperatures by Point Load and Leeb Rebound Hardness Testing. Rock Mechanics and Rock Engineering. 55(1):1-17. https://doi.org/10.1007/s00603-021-02647-0

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/196923

Ficheros en el ítem

Metadatos del ítem

Título: Predicting the Uniaxial Compressive Strength of a Limestone Exposed to High Temperatures by Point Load and Leeb Rebound Hardness Testing
Autor: Garrido De La Torre, Mª Elvira Petnga, Ferry B. Martínez Ibáñez, Víctor Serón Gáñez, José Bernardo Hidalgo Signes, Carlos Tomás, Roberto
Entidad UPV: Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos - Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports
Fecha difusión:
Resumen:
[EN] The effect of exposure to high temperature on rock strength is a topic of interest in many engineering fields. In general, rock strength is known to decrease as temperature increases. The most common test used to ...[+]
Palabras clave: Limestone , Strength , Hardness , High temperatures , Uniaxial compression strength , Point load test , Hardness Leeb-D value , Historic building
Derechos de uso: Reconocimiento (by)
Fuente:
Rock Mechanics and Rock Engineering. (issn: 0723-2632 )
DOI: 10.1007/s00603-021-02647-0
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s00603-021-02647-0
Agradecimientos:
Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.
Tipo: Artículo

References

Aoki H, Matsukura Y (2008) Estimating the unconfined compressive strength of intact rocks from Equotip hardness. Bull Eng Geol Environ 67(1):23–29. https://doi.org/10.1007/s10064-007-0116-z

Armaghani DJ, Tonnizam Mohamad E, Momeni E, Monjezi M, Sundaram Narayanasamy M (2016) Prediction of the strength and elasticity modulus of granite through an expert artificial neural network. Arab J Geosci 9(1):48. https://doi.org/10.1007/s12517-015-2057-3

Aydin A (2009) ISRM Suggested method for determination of the Schmidt hammer rebound hardness: revised version. Int J Rock Mech Min Sci 46(3):627–634. https://doi.org/10.1016/j.ijrmms.2008.01.020 [+]
Aoki H, Matsukura Y (2008) Estimating the unconfined compressive strength of intact rocks from Equotip hardness. Bull Eng Geol Environ 67(1):23–29. https://doi.org/10.1007/s10064-007-0116-z

Armaghani DJ, Tonnizam Mohamad E, Momeni E, Monjezi M, Sundaram Narayanasamy M (2016) Prediction of the strength and elasticity modulus of granite through an expert artificial neural network. Arab J Geosci 9(1):48. https://doi.org/10.1007/s12517-015-2057-3

Aydin A (2009) ISRM Suggested method for determination of the Schmidt hammer rebound hardness: revised version. Int J Rock Mech Min Sci 46(3):627–634. https://doi.org/10.1016/j.ijrmms.2008.01.020

Aydin G, Karakurt I, Aydiner K (2013) Prediction of the cut depth of granitic rocks machined by abrasive waterjet (AWJ). Rock Mech Rock Eng 46(5):1223–1235. https://doi.org/10.1007/s00603-012-0307-1

Barton N (1979) Suggested methods for the quantitative description of discontinuities in rock masses. Int J Rock Mech Min Sci Geomech Abstr 16(2):22. https://doi.org/10.1016/0148-9062(79)91476-1

Barton N, Choubey V (1977) The shear strength of rock joints in theory and practice. Rock Mech 10(1):1–54. https://doi.org/10.1007/BF01261801

Basu A, Aydin A (2006) Predicting uniaxial compressive strength by point load test: significance of cone penetration. Rock Mech Rock Eng 39:483–490. https://doi.org/10.1007/s00603-006-0082-y

Becattini V, Motmans T, Zappone A, Madonna C, Haselbacher A, Steinfeld A (2017) Experimental investigation of the thermal and mechanical stability of rocks for high-temperature thermal-energy storage. Appl Energy 203:373–389. https://doi.org/10.1016/j.apenergy.2017.06.025

Bieniawski ZT (1974) Estimating the strength of rock materials. J S Afr Inst Min Metall 74:312–320

Bieniawski ZT (1975) The point-load test in geotechnical practice. Eng Geol 9(1):1–11

Bieniawski ZT, Bernede MJ (1979) ISMR Suggested methods for determining the uniaxial compressive strength and deformability of rock materials: part 1. Int J Rock Mech Min Sci Geomech 16(2):138–140. https://doi.org/10.1016/0148-9062(79)91451-7

Broch E, Franklin JA (1972) The point-load strength test. Int J Rock Mech Min Sci Geomech Abstr 9(6):669-676

Brotóns V, Tomás R, Ivorra S, Alarcón JC (2013) Temperature influence on the physical and mechanical properties of a porous rock: San Julian’s calcarenite. Eng Geol 167:117–127. https://doi.org/10.1016/j.enggeo.2013.10.012

Brotóns V, Tomás R, Ivorra S (2014) A calcarenite exposed to true fire conditions: A methodological proposal. In: Rock Engineering and rock mechanics: structures in and on rock masses—Proceedings of EUROCK 2014, ISRM European Regional Symposium, (May)

Chakrabarti B, Yates T, Lewry A (1996) Effect of fire damage on natural stonework in buildings. Constr Build Mater 10(7):539–544. https://doi.org/10.1016/0950-0618(95)00076-3

Chen YL, Ni J, Shao W, Azzam R (2012) Experimental study on the influence of temperature on the mechanical properties of granite under uni-axial compression and fatigue loading. Int J Rock Mech Min Sci 56:62–66. https://doi.org/10.1016/j.ijrmms.2012.07.026

Corkum AG, Asiri Y, El Naggar H, Kinakin D (2018) The leeb hardness test for rock: an updated methodology and UCS correlation. Rock Mech Rock Eng 51(3):665–675. https://doi.org/10.1007/s00603-017-1372-2

David C, Menéndez B, Darot M (1999) Influence of stress-induced and thermal cracking on physical properties and microstructure of La Peyratte granite. Int J Rock Mech Min Sci 36:433–448

Deere DU, Miller RP (1965) Engineering classification and index properties for intact rock. Air Force weapons laboratory, Kirtland Air Base. New Mexico, Technical Report AFWL-TR-65-115.

Diamantis K, Gartzos E, Migiros G (2009) Study on uniaxial compressive strength, point load strength index, dynamic and physical properties of serpentinites from Central Greece: Test results and empirical relations. Eng Geol 108(3–4):199–207. https://doi.org/10.1016/j.enggeo.2009.07.002

Elhakim AF (2015) The use of point load test for Dubai weak calcareous sandstones. J Rock Mech Geotech Eng 7(4):452–457. https://doi.org/10.1016/j.jrmge.2015.06.003

Ferrero AM, Marini P (2001) Experimental studies on the mechanical behaviour of two thermal cracked marbles. Rock Mech Rock Eng 34(1):57–66. https://doi.org/10.1007/s006030170026

Franklin J (1979) ISRM Suggested methods for determining water content, porosity, density absorption and related properties and swelling and slake-durability index properties. Int J Rock Mech Min Sci 16(2):143–151

Galvan M, Preciado J, Seron JB (2014) Correlation between the point load index, Is(50), and the resistance to unconfined compression in limestone from the comunidad valenciana, Spain. Acta Geotech Slov 11(2):35–45

Garrido ME, Martínez-Ibáñez V, Hidalgo C, Biase SD, Tomás R (2020) Effects of thermal gradient on limestone exposed to high temperatures. In: Li JMCC, Ødegaard H, Høien AH (eds) ISRM International Symposium Eurock 2020. International Society for Rock Mechanics and Rock Engineering Norwegian Group for Rock Mechanics, Trondheim

Gokceoglu C, Zorlu K (2004) A fuzzy model to predict the uniaxial compressive strength and the modulus of elasticity of a problematic rock. Eng Appl Artif Intell 17(1):61–72. https://doi.org/10.1016/j.engappai.2003.11.006

Gomez-Heras M, Benavente D, Pla C, Martinez-Martinez J, Fort R, Brotons V (2020) Ultrasonic pulse velocity as a way of improving uniaxial compressive strength estimations from Leeb hardness measurements. Constr Build Mater 261:119996. https://doi.org/10.1016/j.conbuildmat.2020.119996

González-Gómez WS, Quintana P, May-Pat A, Avilés F, May-Crespo J, Alvarado-Gil JJ (2015) Thermal effects on the physical properties of limestones from the Yucatan Peninsula. Int J Rock Mech Min Sci 75:182–189. https://doi.org/10.1016/j.ijrmms.2014.12.010

Griffiths L, Heap MJ, Baud P, Schmittbuhl J (2017) Quantification of microcrack characteristics and implications for stiffness and strength of granite. Int J Rock Mech Min Sci 100(October):138–150. https://doi.org/10.1016/j.ijrmms.2017.10.013

Hassani FP, Scoble MJ, Whittaker BN (1980) Application of the point load index test to strength determination of rock and proposals for a new size-correction chart. In: The 21st US symposium on rock mechanics (USRMS). OnePetro, vol 1. pp 543–564

Huang YH, Yang SQ, Tian WL, Zhao J, Ma D, Zhang CS (2017) Physical and mechanical behavior of granite containing pre-existing holes after high temperature treatment. Arch Civ Mech Eng 17(4):912–925. https://doi.org/10.1016/j.acme.2017.03.007

Idris MA (2018) Effects of elevated temperatures on physical and mechanical properties of carbonate rocks in south-southern Nigeria. Min Miner Depos 12(4):20–27. https://doi.org/10.15407/mining12.01.020

Ioannou I, Aspinall W, Rush D, Bisby L, Rossetto T (2017) Expert judgment-based fragility assessment of reinforced concrete buildings exposed to fire. Reliab Eng Syst Saf 167(May):105–127. https://doi.org/10.1016/j.ress.2017.05.011

Jansen DP, Carlson SR, Young RP, Hutchins DA (1993) Ultrasonic imaging and acoustic emission monitoring of thermally induced microcracks in Lac du Bonnet granite. JGR Solid Earth 98(12):22231–22243. https://doi.org/10.1029/93JB01816

Kahraman S, Gunaydin O, Fener M (2005) The effect of porosity on the relation between uniaxial compressive strength and point load index. Int J Rock Mech Min Sci 42(4):584–589. https://doi.org/10.1016/j.ijrmms.2005.02.004

Karakurt I, Aydin G, Aydiner K (2012) A study on the prediction of kerf angle in abrasive waterjet machining of rocks. Proc Inst Mech Eng Part B J Eng Manuf 226(9):1489–1499. https://doi.org/10.1177/0954405412454395

Keshavarz M, Pellet FL, Loret B (2010) Damage and changes in mechanical properties of a gabbro thermally loaded up to 1,000°C. Pure Appl Geophys 167(12):1511–1523. https://doi.org/10.1007/s00024-010-0130-0

Kohno M, Maeda H (2012) Relationship between point load strength index and uniaxial compressive strength of hydrothermally altered soft rocks. Int J Rock Mech Min Sci 50:147–157

Kompatscher M (2004) Equotip-rebound hardness testing after D. Leeb. In: Proceedings, conference on hardness measurements theory and application in laboratories and industries, vol 1. pp 1–12

Kumari WGP, Ranjith PG, Perera MSA, Chen BK, Abdulagatov IM (2017) Temperature-dependent mechanical behaviour of Australian Strathbogie granite with different cooling treatments. Eng Geol. https://doi.org/10.1016/j.enggeo.2017.09.012

Lewis CD (1982) Industrial and business forecasting methods: a practical guide to exponential smoothing and curve fitting. Butterworth-Heinemann

Lion M, Skoczylas F, Ledésert B (2005) Effects of heating on the hydraulic and poroelastic properties of bourgogne limestone. Int J Rock Mech Min Sci 42(4):508–520. https://doi.org/10.1016/j.ijrmms.2005.01.005

Liu S, Xu J (2014) Mechanical properties of Qinling biotite granite after high temperature treatment. Int J Rock Mech Min Sci 71:188–193. https://doi.org/10.1016/j.ijrmms.2014.07.008

Mao XB, Zhang L, Li TZ, Liu HS (2009) Properties of failure mode and thermal damage for limestone at high temperature. Min Sci Technol 19(3):290–294. https://doi.org/10.1016/S1674-5264(09)60054-5

Martínez-Ibáñez V, Benavente D, Hidalgo Signes C, Tomás R, Garrido ME (2020a) Temperature—induced explosive behaviour and thermo—chemical damage on pyrite—bearing limestones : causes and mechanisms. Rock Mech Rock Eng. https://doi.org/10.1007/s00603-020-02278-x

Martínez-Ibáñez V, Garrido ME, Hidalgo Signes C, Tomás R (2020b) Study of explosive behaviour at high temperatures on limestones from a road tunnel in Spain. In: Li JMCC, Ødegaard H, Høien AH (eds) ISRM International Symposium Eurock 2020. International Society for Rock Mechanics and Rock Engineering Norwegian Group for Rock Mechanics, Trondheim

Martínez-Ibáñez V, Garrido ME, Hidalgo-Signes C, Basco A, Miranda T, Tomás R (2021a) Thermal effects on the drilling performance of a limestone: relationships with physical and mechanical properties. Appl Sci. https://doi.org/10.3390/app11073286

Martínez-Ibáñez V, Garrido ME, Hidalgo Signes C, Tomás R (2021b) Micro and macro-structural effects of high temperatures in Prada limestone: Key factors for future fire-intervention protocols in Tres Ponts Tunnel (Spain). Construct Build Mater 286:122960. https://doi.org/10.1016/j.conbuildmat.2021.122960

Meng QB, Wang CK, Liu JF, Zhang MW, Lu MM, Wu Y (2020) Physical and micro-structural characteristics of limestone after high temperature exposure. Bull Eng Geol Env 79(3):1259–1274. https://doi.org/10.1007/s10064-019-01620-0

Meulenkamp F, Alvarez Grima M (1999) Application of neural networks for the prediction of the unconfined compressive strength (UCS) from Equotip hardness. Int J Rock Mech Min Sci 36(1):29–39. https://doi.org/10.1016/S0148-9062(98)00173-9

O’Rourke JE (1989) Rock index properties for geoengineering in underground development. Min Eng (littleton, Colorado) 41(2):106–109

Ovejero M, Queralt I, De la Fuente C (2005) Petrography and hydric characterization of the quarry material of the varieties of Borriol Stone (Castellon). Materiales de Construccion, 55 no 278(c), 41–54. Retrieved from http://materconstrucc.revistas.csic.es. Accessed Nov 2016

Ozguven A, Ozcelik Y (2014) Effects of high temperature on physico-mechanical properties of Turkish natural building stones. Eng Geol 183:127–136. https://doi.org/10.1016/j.enggeo.2014.10.006

Pomiès MP, Menu M, Vignaud C (1999) Tem observations of goethite dehydration: application to archaeological samples. J Eur Ceram Soc 19(8):1605–1614. https://doi.org/10.1016/s0955-2219(98)00254-4

Rabat A, Cano M, Tomás R, Tamayo E, Alejano LR (2020) Evaluation of strength and deformability of soft sedimentary rocks in dry and saturated conditions through needle penetration and point load tests: a comparative study. Rock Mech Rock Eng 53(6):2707–2726. https://doi.org/10.1007/s00603-020-02067-6

Rosengren KJ, Jaenger JC (1968) The mechanical properties of an interlocked low-porosity aggregate. Geotechnique 18:317–326

Sabatakakis N, Koukis G, Tsiambaos G, Papanakli S (2008) Index properties and strength variation controlled by microstructure for sedimentary rocks. Eng Geol 97(1–2):80–90. https://doi.org/10.1016/j.enggeo.2007.12.004

Şahin M, Ulusay R, Karakul H (2020) Point load strength index of half-cut core specimens and correlation with uniaxial compressive strength. Rock Mech Rock Eng 53(8):3745–3760. https://doi.org/10.1007/s00603-020-02137-9

Saroglou H, Tsiambaos G (2007) Classification of anisotropic rocks. In: 11th ISRM congress. OnePetro, vol 1. pp 191–196

Singh VK, Singh DP (1993) Correlation between point load index and compressive strength for quartzite rocks. Geo tech Geol Eng 11:269–272

Singh VK, Singh D, Singh TN (2001) Prediction of strength properties of some schistose rocks from petrographic properties using artificial neural networks. Int J Rock Mech Min Sci 38(2):269–284. https://doi.org/10.1016/S1365-1609(00)00078-2

Singh R, Umrao RK, Ahmad M, Ansari MK, Sharma LK, Singh TN (2017) Prediction of geomechanical parameters using soft computing and multiple regression approach. Measurement 99:108–119. https://doi.org/10.1016/j.measurement.2016.12.023

Sirdesai NN, Singh TN, Ranjith PG (2017) Thermal alterations in the poro-mechanical characteristic of an Indian sandstone—a comparative study. Eng Geol 226:208–220. https://doi.org/10.1016/j.enggeo.2017.06.010

Sonmez H, Tuncay E, Gokceoglu C (2004) Models to predict the uniaxial compressive strength and the modulus of elasticity for Ankara Agglomerate. Int J Rock Mech Min Sci 41(5):717–729. https://doi.org/10.1016/j.ijrmms.2004.01.011

Sonmez H, Gokceoglu C, Medley EW, Tuncay E, Nefeslioglu HA (2006) Estimating the uniaxial compressive strength of a volcanic bimrock. Int J Rock Mech Min Sci 43(4):554–561. https://doi.org/10.1016/j.ijrmms.2005.09.014

Sulukcu S, Ulusay R (2001) Evaluation of the block punch index test with particular reference to the size effect, failure mechanism and its effectiveness in predicting rock strength. Int J Rock Mech Min Sci 38:1091–1111

Thuro K, Plinninger RJ, Zah S, Schutz S (2001) Scale effects in rock strength properties. Part 2: point load test and point load strength index. In: Särkkä P, Eloranta P (eds) Rock mechanics-a challenge for society, p 881. Proceedings of the ISRM regional symposium Eurock, pp 175–180

Tomás R, Cano M, Pulgarín LF, Brotóns V, Benavente D, Miranda T, Vasconcelos G (2021) Thermal effect of high temperatures on the physical and mechanical properties of a granite used in UNESCO World Heritage Sites in North Portugal. J Build Eng 43:1–16. https://doi.org/10.1016/j.jobe.2021.102823

Török A, Hajpál M (2005) Effect of temperature changes on the mineralogy and physical properties of sandstones a laboratory study. Restor Build Monum Bauinstandsetzen Und Baudenkmalpflege 11(4):1–8

Tugrul A, Zarif IH (1999) Correlation of mineralogical and textural characteristics with engineering properties of selected granitic rocks from Turkey. Eng Geol 51:303–317

Vagnon F, Colombero C, Colombo F, Comina C, Ferrero AM, Mandrone G, Vinciguerra SC (2019) Effects of thermal treatment on physical and mechanical properties of Valdieri Marble-NW Italy. Int J Rock Mech Min Sci 116:75–86. https://doi.org/10.1016/j.ijrmms.2019.03.006

Vagnon F, Colombero C, Comina C, Ferrero AM, Mandrone G, Missagia R, Vinciguerra SC (2021) Relating physical properties to temperature-induced damage in carbonate rocks. Geotech Lett 11(2):1–11. https://doi.org/10.1680/jgele.20.00122

Verwaal W, Mulder A (1993) Estimating rock strength with the Equotip hardness tester. Int J Rock Mech Min Sci Geomech Abstr 30(6):659–662

Viles H, Goudie A, Grab S, Lalley J (2011) The use of the Schmidt Hammer and Equotip for rock hardness assessment in geomorphology and heritage science: a comparative analysis. Earth Surf Proc Land 36(3):320–333. https://doi.org/10.1002/esp.2040

Villarraga CJ, Gasc-Barbier M, Vaunat J, Darrozes J (2018) The effect of thermal cycles on limestone mechanical degradation. Int J Rock Mech Min Sci 109:115–123. https://doi.org/10.1016/j.ijrmms.2018.06.017

Wang F, Frühwirt T, Konietzky H, Zhu Q (2019) Thermo-mechanical behaviour of granite during high-speed heating. Eng Geol 260:105258. https://doi.org/10.1016/j.enggeo.2019.105258

Wong LNY, Zhang Y, Wu Z (2020) Rock strengthening or weakening upon heating in the mild temperature range? Eng Geol 272:105619. https://doi.org/10.1016/j.enggeo.2020.105619

Wu G, Wang Y, Swift G, Chen J (2013) Laboratory investigation of the effects of temperature on the mechanical properties of sandstone. Geotech Geol Eng 31(2):809–816. https://doi.org/10.1007/s10706-013-9614-x

Yang J, Fu LY, Zhang W, Wang Z (2019) Mechanical property and thermal damage factor of limestone at high temperature. Int J Rock Mech Min Sci. https://doi.org/10.1016/j.ijrmms.2019.03.012

Yesiloglu-Gultekin N, Gokceoglu C, Sezer EA (2013) Prediction of uniaxial compressive strength of granitic rocks by various nonlinear tools and comparison of their performances. Int J Rock Mech Min Sci 62:113–122. https://doi.org/10.1016/j.ijrmms.2013.05.005

Yilmaz NG (2013) The influence of testing procedures on uniaxial compressive strength prediction of carbonate rocks from Equotip hardness tester (EHT) and proposal of a new testing methodology: hybrid dynamic hardness (HDH). Rock Mech Rock Eng. https://doi.org/10.1007/s00603-012-0261-y

Ylmaz I, Sendr H (2002) Correlation of Schmidt hardness with unconfined compressive strength and Young’s modulus in gypsum from Sivas (Turkey). Eng Geol 66(3–4):211–219. https://doi.org/10.1016/S0013-7952(02)00041-8

Yüksek S (2019) Mechanical properties of some building stones from volcanic deposits of mount Erciyes (Turkey). Mater Constr 69:187. https://doi.org/10.3989/mc.2019.04618

Zhang W, Lv C (2020) Effects of mineral content on limestone properties with exposure to different temperatures. J Pet Sci Eng 188:106941. https://doi.org/10.1016/j.petrol.2020.106941

Zhang LY, Mao XB, Lu AH (2009) Experimental study on the mechanical properties of rocks at high temperature. Sci China Ser E Technol Sci 52(3):641–646. https://doi.org/10.1007/s11431-009-0063-y

Zhang W, Sun Q, Hao S, Geng J, Lv C (2016) Experimental study on the variation of physical and mechanical properties of rock after high temperature treatment. Appl Therm Eng 98:1297–1304. https://doi.org/10.1016/j.applthermaleng.2016.01.010

Zorlu K, Gokceoglu C, Ocakoglu F, Nefeslioglu HA, Acikalin S (2008) Prediction of uniaxial compressive strength of sandstones using petrography-based models. Eng Geol 96(3–4):141–158. https://doi.org/10.1016/j.enggeo.2007.10.009

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem