- -

Separation of virgin plastic polymers and post-consumer mixed plastic waste by sinking-flotation technique

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Separation of virgin plastic polymers and post-consumer mixed plastic waste by sinking-flotation technique

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Meneses Quelal, Washington Orlando es_ES
dc.contributor.author Velázquez Martí, Borja es_ES
dc.contributor.author Ferrer Gisbert, Andrés es_ES
dc.date.accessioned 2023-09-25T18:01:51Z
dc.date.available 2023-09-25T18:01:51Z
dc.date.issued 2022-01 es_ES
dc.identifier.issn 0944-1344 es_ES
dc.identifier.uri http://hdl.handle.net/10251/197087
dc.description.abstract [EN] The main objective of this research is to separate virgin polymers (PA, PC, PP, HDPE; PS, and ABS) and post-consumer plastic waste from municipal solid waste (MSW) using the sinking-flotation technique. Separation was carried out on a pilot scale in an 800-l useful volume container with 160 rpm agitation for one hour. Tap water, ethanol solutions, and sodium chloride at different concentrations were used as densification medium. Virgin polymers were separated into two groups: low-density (HDPE and PP) and high-density polymers groups (PS, ABS, PA, and PC). Polymers whose density was less than that of the medium solution floated to the surface, while those whose density was greater than those of the medium solution sank to the bottom. The experimental results showed that complete separation of HDPE from PP achieved 23% ethanol v/v, whereas high-density polymers separated up to 40% w/v sodium chloride. Polymer recovery ranged from 70 to 99.70%. In post-consumer recycled plastic waste, fractions of 29.6% polyolefins, 37.54% PS, 11% ABS, 8% PA, 12% PC PET, and PVC were obtained. Finally, cast plates were made of the post-consumer waste to properly identify the polymer type present in the separated fractions. es_ES
dc.description.sponsorship Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Environmental Science and Pollution Research es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Polyolefins es_ES
dc.subject Recycling es_ES
dc.subject Processing es_ES
dc.subject Density es_ES
dc.subject Concentration es_ES
dc.subject Treatment es_ES
dc.subject.classification INGENIERIA AGROFORESTAL es_ES
dc.title Separation of virgin plastic polymers and post-consumer mixed plastic waste by sinking-flotation technique es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11356-021-15611-w es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural es_ES
dc.description.bibliographicCitation Meneses Quelal, WO.; Velázquez Martí, B.; Ferrer Gisbert, A. (2022). Separation of virgin plastic polymers and post-consumer mixed plastic waste by sinking-flotation technique. Environmental Science and Pollution Research. 29(1):1364-1374. https://doi.org/10.1007/s11356-021-15611-w es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s11356-021-15611-w es_ES
dc.description.upvformatpinicio 1364 es_ES
dc.description.upvformatpfin 1374 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 29 es_ES
dc.description.issue 1 es_ES
dc.identifier.pmid 34350580 es_ES
dc.identifier.pmcid PMC8724085 es_ES
dc.relation.pasarela S\444290 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Achilias DS, Roupakias C, Megalokonomos P, Lappas AA, Antonakou ΕV (2007) Chemical recycling of plastic wastes made from polyethylene (LDPE and HDPE) and polypropylene (PP). J Hazard Mater 149:536–542. https://doi.org/10.1016/j.jhazmat.2007.06.076 es_ES
dc.description.references Aljerf L (2016) Green technique development for promoting the efficiency of pulp slurry reprocess. Sci J King Faisal Univ 17:1–10. https://doi.org/10.1007/978-3-319-18744-0 es_ES
dc.description.references Al-Salem SM (2019) Influential parameters on natural weathering under harsh climatic conditions of mechanically recycled plastic film specimens. J Environ Manag 230:355–365. https://doi.org/10.1016/j.jenvman.2018.09.044 es_ES
dc.description.references Alter H (2005) The recovery of plastics from waste with reference to froth flotation. Resour Conserv Recycl 43:119–132. https://doi.org/10.1016/j.resconrec.2004.05.003 es_ES
dc.description.references Ayeleru OO, Dlova S, Akinribide OJ, Ntuli F, Kupolati WK, Marina PF, Blencowe A, Olubambi PA (2020) Challenges of plastic waste generation and management in sub-Saharan Africa: A review. Waste Manag 110:24–42. https://doi.org/10.1016/j.wasman.2020.04.017 es_ES
dc.description.references Bauer M, Lehner M, Schwabl D, Flachberger H, Kranzinger L, Pomberger R, Hofer W (2018) Sink–float density separation of post-consumer plastics for feedstock recycling. J Mater Cycles Waste Manag 20:1781–1791. https://doi.org/10.1007/s10163-018-0748-z es_ES
dc.description.references Bing X, Bloemhof JM, Ramos TRP, Barbosa-Povoa AP, Wong CY, van der Vorst JGAJ (2016) Research challenges in municipal solid waste logistics management. Waste Manag 48:584–592. https://doi.org/10.1016/j.wasman.2015.11.025 es_ES
dc.description.references Bonifazi G, D’Agostini M, Dall’Ava A, Serranti S, Turioni F (2013) A new hyperspectral imaging based device for quality control in plastic recycling. In: Proc.SPIE. https://doi.org/10.1117/12.2014909 es_ES
dc.description.references Bucknall DG (2020) Plastics as a materials system in a circular economy. Philos Trans R Soc A Math Phys Eng Sci 378:20190268. https://doi.org/10.1098/rsta.2019.0268 es_ES
dc.description.references Buekens A, Yang J (2014) Recycling of WEEE plastics: a review. J Mater Cycles Waste Manag 16:415–434. https://doi.org/10.1007/s10163-014-0241-2 es_ES
dc.description.references Burange AS, Gawande MB, Lam FLY, Jayaram RV, Luque R (2015) Heterogeneously catalyzed strategies for the deconstruction of high density polyethylene: plastic waste valorisation to fuels. Green Chem 17:146–156. https://doi.org/10.1039/C4GC01760A es_ES
dc.description.references Burat F, Güney A, Olgaç Kangal M (2009) Selective separation of virgin and post-consumer polymers (PET and PVC) by flotation method. Waste Manag 29:1807–1813. https://doi.org/10.1016/j.wasman.2008.12.018 es_ES
dc.description.references Chand Malav L, Yadav KK, Gupta N, Kumar S, Sharma GK, Krishnan S, Rezania S, Kamyab H, Pham QB, Yadav S, Bhattacharyya S, Yadav VK, Bach QV (2020) A review on municipal solid waste as a renewable source for waste-to-energy project in India: Current practices, challenges, and future opportunities. J Clean Prod 277:123227. https://doi.org/10.1016/j.jclepro.2020.123227 es_ES
dc.description.references Chen X, Xi F, Geng Y, Fujita T (2011) The potential environmental gains from recycling waste plastics: Simulation of transferring recycling and recovery technologies to Shenyang, China. Waste Manag 31:168–179. https://doi.org/10.1016/j.wasman.2010.08.010 es_ES
dc.description.references Dahlbo H, Poliakova V, Mylläri V, Sahimaa O, Anderson R (2018) Recycling potential of post-consumer plastic packaging waste in Finland. Waste Manag 71:52–61. https://doi.org/10.1016/j.wasman.2017.10.033 es_ES
dc.description.references Dodbiba G, Haruki N, Shibayama A, Miyazaki T, Fujita T (2002) Combination of sink–float separation and flotation technique for purification of shredded PET-bottle from PE or PP flakes. Int J Miner Process 65:11–29. https://doi.org/10.1016/S0301-7516(01)00056-4 es_ES
dc.description.references Du Y, Zhang Y, Jiang H, Li T, Luo M, Wang L, Wang C, Wang H (2020) Hydrophilic modification of polycarbonate surface with surface alkoxylation pretreatment for efficient separation of polycarbonate and polystyrene by froth flotation. Waste Manag 118:471–480. https://doi.org/10.1016/j.wasman.2020.09.006 es_ES
dc.description.references Ferrara G, Meloy TP (1999) Low dense media process: a new process for low-density solid separation. Powder Technol 103:151–155. https://doi.org/10.1016/S0032-5910(98)00216-2 es_ES
dc.description.references Ferronato N, Torretta V (2019) Waste Mismanagement in Developing Countries: A Review of Global Issues. Int J Environ Res Public Health 16:1060. https://doi.org/10.3390/ijerph16061060 es_ES
dc.description.references Fraunholcz N (2004) Separation of waste plastics by froth flotation––a review, part I. Miner Eng 17:261–268. https://doi.org/10.1016/j.mineng.2003.10.028 es_ES
dc.description.references Fu S, Fang Y, Yuan H, Tan W, Dong Y (2017) Effect of the medium’s density on the hydrocyclonic separation of waste plastics with different densities. Waste Manag 67:27–31. https://doi.org/10.1016/j.wasman.2017.05.019 es_ES
dc.description.references Geyer R, Jambeck JR, Law KL (2017) Production, use, and fate of all plastics ever made. Sci Adv 3:e1700782. https://doi.org/10.1126/sciadv.1700782 es_ES
dc.description.references Gu L, Ozbakkaloglu T (2016) Use of recycled plastics in concrete: A critical review. Waste Manag 51:19–42. https://doi.org/10.1016/j.wasman.2016.03.005 es_ES
dc.description.references Gundupalli SP, Hait S, Thakur A (2017) A review on automated sorting of source-separated municipal solid waste for recycling. Waste Manag 60:56–74. https://doi.org/10.1016/j.wasman.2016.09.015 es_ES
dc.description.references Guney A, Poyraz MI, Kangal O, Burat F (2013) Investigation of thermal treatment on selective separation of post consumer plastics prior to froth flotation. Waste Manag 33:1795–1799. https://doi.org/10.1016/j.wasman.2013.05.006 es_ES
dc.description.references Gupta N, Yadav KK, Kumar V (2015) A review on current status of municipal solid waste management in India. J Environ Sci 37:206–217. https://doi.org/10.1016/j.jes.2015.01.034 es_ES
dc.description.references Hopewell J, Dvorak R, Kosior E (2009) Plastics recycling: challenges and opportunities. Philos Trans R Soc Lond Ser B Biol Sci 364:2115–2126. https://doi.org/10.1098/rstb.2008.0311 es_ES
dc.description.references Hu B, Serranti S, Fraunholcz N, Di Maio F, Bonifazi G (2013) Recycling-oriented characterization of polyolefin packaging waste. Waste Manag 33:574–584. https://doi.org/10.1016/j.wasman.2012.11.018 es_ES
dc.description.references Huang D-Y, Zhou S-G, Hong W, Feng W-F, Tao L (2013) Pollution characteristics of volatile organic compounds, polycyclic aromatic hydrocarbons and phthalate esters emitted from plastic wastes recycling granulation plants in Xingtan Town, South China. Atmos Environ 71:327–334. https://doi.org/10.1016/j.atmosenv.2013.02.011 es_ES
dc.description.references Huysman S, De Schaepmeester J, Ragaert K, Dewulf J, De Meester S (2017) Performance indicators for a circular economy: A case study on post-industrial plastic waste. Resour Conserv Recycl 120:46–54. https://doi.org/10.1016/j.resconrec.2017.01.013 es_ES
dc.description.references Ito M, Tsunekawa M, Ishida E, Kawai K, Takahashi T, Abe N, Hiroyoshi N (2010) Reverse jig separation of shredded floating plastics — separation of polypropylene and high density polyethylene. Int J Miner Process 97:96–99. https://doi.org/10.1016/j.minpro.2010.08.007 es_ES
dc.description.references Jin F-L, Zhao M, Park M, Park S-J (2019) Recent Trends of Foaming in Polymer Processing: A Review. Polymers (Basel) 11:953. https://doi.org/10.3390/polym11060953 es_ES
dc.description.references Kangal MO (2010) Selective Flotation Technique for Separation of PET and HDPE Used in Drinking Water Bottles. Miner Process Extr Metall Rev 31:214–223. https://doi.org/10.1080/08827508.2010.483362 es_ES
dc.description.references Kangal MO, Üçerler Z (2018) Recycling of Virgin and Post-Consumer Polypropylene and High Density Polyethylene. Int Polym Process 33:268–275. https://doi.org/10.3139/217.3506 es_ES
dc.description.references Karmakar GP (2020) Regeneration and Recovery of Plastics. Ref Modul Mater Sci Mater Eng. https://doi.org/10.1016/B978-0-12-820352-1.00045-6 es_ES
dc.description.references Lackner M (2015) Bioplastics-Biobased plastics as renewable and/or biodegradable alternatives to petroplastics. Kirk-Othmer Encycl Chem Technol:1–41. https://doi.org/10.1002/0471238961.koe00006 es_ES
dc.description.references Law KL, Starr N, Siegler TR, Jambeck JR, Mallos NJ, Leonard GH (2020) The United States’ contribution of plastic waste to land and ocean. Sci Adv 6:288. https://doi.org/10.1126/sciadv.abd0288 es_ES
dc.description.references Li M, Qiu J, Xing H, Fan D, Wang S, Li S, Jiang Z, Tang T (2018a) In-situ cooling of adsorbed water to control cellular structure of polypropylene composite foam during CO2 batch foaming process. Polymer (Guildf) 155:116–128. https://doi.org/10.1016/j.polymer.2018.09.034 es_ES
dc.description.references Li R, Lin H, Lan P, Gao J, Huang Y, Wen Y, Yang W (2018b) Lightweight cellulose/carbon fiber composite foam for electromagnetic interference (EMI) shielding. Polymers (Basel) 10:1319. https://doi.org/10.3390/polym10121319 es_ES
dc.description.references Mancheno M, Astudillo S, Arévalo P, Malo I, Naranjo T, Espinoza J (2016) Aprovechamiento energético de residuos plásticos obteniendo combustibles líquidos, por medio de pirólisis. La Granja 23:1. https://doi.org/10.17163/lgr.n23.2016.06 es_ES
dc.description.references Mumbach GD, de Sousa CR, Machado RAF, Bolzan A (2019) Dissolution of adhesive resins present in plastic waste to recover polyolefin by sink-float separation processes. J Environ Manag 243:453–462. https://doi.org/10.1016/j.jenvman.2019.05.021 es_ES
dc.description.references Pita F, Castilho A (2016) Influence of shape and size of the particles on jigging separation of plastics mixture. Waste Manag 48:89–94. https://doi.org/10.1016/j.wasman.2015.10.034 es_ES
dc.description.references Pita F, Castilho A (2017) Separation of plastics by froth flotation. The role of size, shape and density of the particles. Waste Manag 60:91–99. https://doi.org/10.1016/j.wasman.2016.07.041 es_ES
dc.description.references Pol VG, Thiyagarajan P (2010) Remediating plastic waste into carbon nanotubes. J Environ Monit 12:455–459. https://doi.org/10.1039/B914648B es_ES
dc.description.references Pongstabodee S, Kunachitpimol N, Damronglerd S (2008) Combination of three-stage sink–float method and selective flotation technique for separation of mixed post-consumer plastic waste. Waste Manag 28:475–483. https://doi.org/10.1016/j.wasman.2007.03.005 es_ES
dc.description.references Qu Y h, Li Y p, Zou X t, Xu K w, Xue Y t (2020) Microwave treatment combined with wetting agent for an efficient flotation separation of acrylonitrile butadiene styrene (ABS) from plastic mixtures. J Mater Cycles Waste Manag 23:96–106. https://doi.org/10.1007/s10163-020-01099-y es_ES
dc.description.references Rahimi A, García JM (2017) Chemical recycling of waste plastics for new materials production. Nat Rev Chem 1:46. https://doi.org/10.1038/s41570-017-0046 es_ES
dc.description.references Ruj B, Pandey V, Jash P, Srivastava V (2015) Sorting of plastic waste for effective recycling. Int J Appl Sci Eng Res 4. https://doi.org/10.6088/ijaser.04058 es_ES
dc.description.references Serranti S, Luciani V, Bonifazi G, Hu B, Rem PC (2015) An innovative recycling process to obtain pure polyethylene and polypropylene from household waste. Waste Manag 35:12–20. https://doi.org/10.1016/j.wasman.2014.10.017 es_ES
dc.description.references Sharma HB, Vanapalli KR, Cheela VRS, Ranjan VP, Jaglan AK, Dubey B, Goel S, Bhattacharya J (2020) Challenges, opportunities, and innovations for effective solid waste management during and post COVID-19 pandemic. Resour Conserv Recycl 162:105052. https://doi.org/10.1016/j.resconrec.2020.105052 es_ES
dc.description.references Shen H, Forssberg E, Pugh RJ (2001) Selective flotation separation of plastics by particle control. Resour Conserv Recycl 33:37–50. https://doi.org/10.1016/S0921-3449(01)00056-8 es_ES
dc.description.references Shimoiizaka J, Kounosu A, Hayashi Y, Saito K (1976) A new type sink-float separator for waste plastics. J Min Metall Inst Japan 92:675–679. https://doi.org/10.2473/shigentosozai1953.92.1064_675 es_ES
dc.description.references Singh N, Hui D, Singh R, Ahuja IPS, Feo L, Fraternali F (2017) Recycling of plastic solid waste: A state of art review and future applications. Compos Part B Eng 115:409–422. https://doi.org/10.1016/j.compositesb.2016.09.013 es_ES
dc.description.references Takoungsakdakun T, Pongstabodee S (2007) Separation of mixed post-consumer PET–POM–PVC plastic waste using selective flotation. Sep Purif Technol 54:248–252. https://doi.org/10.1016/j.seppur.2006.09.011 es_ES
dc.description.references Tsunekawa M, Naoi B, Ogawa S, Hori K, Hiroyoshi N, Ito M, Hirajima T (2005) Jig separation of plastics from scrapped copy machines. Int J Miner Process 76:67–74. https://doi.org/10.1016/j.minpro.2004.12.001 es_ES
dc.description.references Tue NM, Goto A, Takahashi S, Itai T, Asante KA, Kunisue T, Tanabe S (2016) Release of chlorinated, brominated and mixed halogenated dioxin-related compounds to soils from open burning of e-waste in Agbogbloshie (Accra, Ghana). J Hazard Mater 302:151–157. https://doi.org/10.1016/j.jhazmat.2015.09.062 es_ES
dc.description.references Vazquez YV, Barragán F, Castillo LA, Barbosa SE (2020) Analysis of the relationship between the amount and type of MSW and population socioeconomic level: Bahía Blanca case study, Argentina. Heliyon 6:e04343. https://doi.org/10.1016/j.heliyon.2020.e04343 es_ES
dc.description.references Vitorino de Souza Melaré A, Montenegro González S, Faceli K, Casadei V (2017) Technologies and decision support systems to aid solid-waste management: a systematic review. Waste Manag 59:567–584. https://doi.org/10.1016/j.wasman.2016.10.045 es_ES
dc.description.references Wang C, Wang H, Fu J, Liu Y (2015) Flotation separation of waste plastics for recycling—A review. Waste Manag 41:28–38. https://doi.org/10.1016/j.wasman.2015.03.027 es_ES
dc.description.references Wang C, Wang H, Gu G, Lin Q, Zhang L, Huang L, Zhao J (2016) Ammonia modification for flotation separation of polycarbonate and polystyrene waste plastics. Waste Manag 51:13–18. https://doi.org/10.1016/j.wasman.2016.02.037 es_ES
dc.description.references Wang G, Zhao J, Yu K, Mark LH, Wang G, Gong P, Park CB, Zhao G (2017) Role of elastic strain energy in cell nucleation of polymer foaming and its application for fabricating sub-microcellular TPU microfilms. Polymer (Guildf) 119:28–39. https://doi.org/10.1016/j.polymer.2017.05.016 es_ES
dc.description.references Wang L, Wu Y-K, Ai F-F, Fan J, Xia Z-P, Liu Y (2018) Hierarchical Porous Polyamide 6 by Solution Foaming: Synthesis. Characterization and Properties Polymers (Basel) 10. https://doi.org/10.3390/polym10121310 es_ES
dc.description.references Wang K, Zhang Y, Zhong Y, Luo M, Du Y, Wang L, Wang H (2020) Flotation separation of polyethylene terephthalate from waste packaging plastics through ethylene glycol pretreatment assisted by sonication. Waste Manag 105:309–316. https://doi.org/10.1016/j.wasman.2020.02.021 es_ES
dc.description.references Zhang S, Lin Y, Ye L, Gu Y, Qiu J, Tang T, Li M (2018) Unexpected foaming behavior of heterografted comb-like PS-g-(PS/PE) copolymers with high branching density at semi-solid state under CO2 batching foam. Polymer (Guildf) 146:304–311. https://doi.org/10.1016/j.polymer.2018.05.050 es_ES
dc.description.references Zhang Y, Jiang H, Wang H, Wang C (2020) Separation of hazardous polyvinyl chloride from waste plastics by flotation assisted with surface modification of ammonium persulfate: Process and mechanism. J Hazard Mater 389:121918. https://doi.org/10.1016/j.jhazmat.2019.121918 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem