Mostrar el registro sencillo del ítem
dc.contributor.author | Meneses Quelal, Washington Orlando | es_ES |
dc.contributor.author | Velázquez Martí, Borja | es_ES |
dc.contributor.author | Ferrer Gisbert, Andrés | es_ES |
dc.date.accessioned | 2023-09-25T18:01:51Z | |
dc.date.available | 2023-09-25T18:01:51Z | |
dc.date.issued | 2022-01 | es_ES |
dc.identifier.issn | 0944-1344 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/197087 | |
dc.description.abstract | [EN] The main objective of this research is to separate virgin polymers (PA, PC, PP, HDPE; PS, and ABS) and post-consumer plastic waste from municipal solid waste (MSW) using the sinking-flotation technique. Separation was carried out on a pilot scale in an 800-l useful volume container with 160 rpm agitation for one hour. Tap water, ethanol solutions, and sodium chloride at different concentrations were used as densification medium. Virgin polymers were separated into two groups: low-density (HDPE and PP) and high-density polymers groups (PS, ABS, PA, and PC). Polymers whose density was less than that of the medium solution floated to the surface, while those whose density was greater than those of the medium solution sank to the bottom. The experimental results showed that complete separation of HDPE from PP achieved 23% ethanol v/v, whereas high-density polymers separated up to 40% w/v sodium chloride. Polymer recovery ranged from 70 to 99.70%. In post-consumer recycled plastic waste, fractions of 29.6% polyolefins, 37.54% PS, 11% ABS, 8% PA, 12% PC PET, and PVC were obtained. Finally, cast plates were made of the post-consumer waste to properly identify the polymer type present in the separated fractions. | es_ES |
dc.description.sponsorship | Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Environmental Science and Pollution Research | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Polyolefins | es_ES |
dc.subject | Recycling | es_ES |
dc.subject | Processing | es_ES |
dc.subject | Density | es_ES |
dc.subject | Concentration | es_ES |
dc.subject | Treatment | es_ES |
dc.subject.classification | INGENIERIA AGROFORESTAL | es_ES |
dc.title | Separation of virgin plastic polymers and post-consumer mixed plastic waste by sinking-flotation technique | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s11356-021-15611-w | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural | es_ES |
dc.description.bibliographicCitation | Meneses Quelal, WO.; Velázquez Martí, B.; Ferrer Gisbert, A. (2022). Separation of virgin plastic polymers and post-consumer mixed plastic waste by sinking-flotation technique. Environmental Science and Pollution Research. 29(1):1364-1374. https://doi.org/10.1007/s11356-021-15611-w | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s11356-021-15611-w | es_ES |
dc.description.upvformatpinicio | 1364 | es_ES |
dc.description.upvformatpfin | 1374 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 29 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.pmid | 34350580 | es_ES |
dc.identifier.pmcid | PMC8724085 | es_ES |
dc.relation.pasarela | S\444290 | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | Achilias DS, Roupakias C, Megalokonomos P, Lappas AA, Antonakou ΕV (2007) Chemical recycling of plastic wastes made from polyethylene (LDPE and HDPE) and polypropylene (PP). J Hazard Mater 149:536–542. https://doi.org/10.1016/j.jhazmat.2007.06.076 | es_ES |
dc.description.references | Aljerf L (2016) Green technique development for promoting the efficiency of pulp slurry reprocess. Sci J King Faisal Univ 17:1–10. https://doi.org/10.1007/978-3-319-18744-0 | es_ES |
dc.description.references | Al-Salem SM (2019) Influential parameters on natural weathering under harsh climatic conditions of mechanically recycled plastic film specimens. J Environ Manag 230:355–365. https://doi.org/10.1016/j.jenvman.2018.09.044 | es_ES |
dc.description.references | Alter H (2005) The recovery of plastics from waste with reference to froth flotation. Resour Conserv Recycl 43:119–132. https://doi.org/10.1016/j.resconrec.2004.05.003 | es_ES |
dc.description.references | Ayeleru OO, Dlova S, Akinribide OJ, Ntuli F, Kupolati WK, Marina PF, Blencowe A, Olubambi PA (2020) Challenges of plastic waste generation and management in sub-Saharan Africa: A review. Waste Manag 110:24–42. https://doi.org/10.1016/j.wasman.2020.04.017 | es_ES |
dc.description.references | Bauer M, Lehner M, Schwabl D, Flachberger H, Kranzinger L, Pomberger R, Hofer W (2018) Sink–float density separation of post-consumer plastics for feedstock recycling. J Mater Cycles Waste Manag 20:1781–1791. https://doi.org/10.1007/s10163-018-0748-z | es_ES |
dc.description.references | Bing X, Bloemhof JM, Ramos TRP, Barbosa-Povoa AP, Wong CY, van der Vorst JGAJ (2016) Research challenges in municipal solid waste logistics management. Waste Manag 48:584–592. https://doi.org/10.1016/j.wasman.2015.11.025 | es_ES |
dc.description.references | Bonifazi G, D’Agostini M, Dall’Ava A, Serranti S, Turioni F (2013) A new hyperspectral imaging based device for quality control in plastic recycling. In: Proc.SPIE. https://doi.org/10.1117/12.2014909 | es_ES |
dc.description.references | Bucknall DG (2020) Plastics as a materials system in a circular economy. Philos Trans R Soc A Math Phys Eng Sci 378:20190268. https://doi.org/10.1098/rsta.2019.0268 | es_ES |
dc.description.references | Buekens A, Yang J (2014) Recycling of WEEE plastics: a review. J Mater Cycles Waste Manag 16:415–434. https://doi.org/10.1007/s10163-014-0241-2 | es_ES |
dc.description.references | Burange AS, Gawande MB, Lam FLY, Jayaram RV, Luque R (2015) Heterogeneously catalyzed strategies for the deconstruction of high density polyethylene: plastic waste valorisation to fuels. Green Chem 17:146–156. https://doi.org/10.1039/C4GC01760A | es_ES |
dc.description.references | Burat F, Güney A, Olgaç Kangal M (2009) Selective separation of virgin and post-consumer polymers (PET and PVC) by flotation method. Waste Manag 29:1807–1813. https://doi.org/10.1016/j.wasman.2008.12.018 | es_ES |
dc.description.references | Chand Malav L, Yadav KK, Gupta N, Kumar S, Sharma GK, Krishnan S, Rezania S, Kamyab H, Pham QB, Yadav S, Bhattacharyya S, Yadav VK, Bach QV (2020) A review on municipal solid waste as a renewable source for waste-to-energy project in India: Current practices, challenges, and future opportunities. J Clean Prod 277:123227. https://doi.org/10.1016/j.jclepro.2020.123227 | es_ES |
dc.description.references | Chen X, Xi F, Geng Y, Fujita T (2011) The potential environmental gains from recycling waste plastics: Simulation of transferring recycling and recovery technologies to Shenyang, China. Waste Manag 31:168–179. https://doi.org/10.1016/j.wasman.2010.08.010 | es_ES |
dc.description.references | Dahlbo H, Poliakova V, Mylläri V, Sahimaa O, Anderson R (2018) Recycling potential of post-consumer plastic packaging waste in Finland. Waste Manag 71:52–61. https://doi.org/10.1016/j.wasman.2017.10.033 | es_ES |
dc.description.references | Dodbiba G, Haruki N, Shibayama A, Miyazaki T, Fujita T (2002) Combination of sink–float separation and flotation technique for purification of shredded PET-bottle from PE or PP flakes. Int J Miner Process 65:11–29. https://doi.org/10.1016/S0301-7516(01)00056-4 | es_ES |
dc.description.references | Du Y, Zhang Y, Jiang H, Li T, Luo M, Wang L, Wang C, Wang H (2020) Hydrophilic modification of polycarbonate surface with surface alkoxylation pretreatment for efficient separation of polycarbonate and polystyrene by froth flotation. Waste Manag 118:471–480. https://doi.org/10.1016/j.wasman.2020.09.006 | es_ES |
dc.description.references | Ferrara G, Meloy TP (1999) Low dense media process: a new process for low-density solid separation. Powder Technol 103:151–155. https://doi.org/10.1016/S0032-5910(98)00216-2 | es_ES |
dc.description.references | Ferronato N, Torretta V (2019) Waste Mismanagement in Developing Countries: A Review of Global Issues. Int J Environ Res Public Health 16:1060. https://doi.org/10.3390/ijerph16061060 | es_ES |
dc.description.references | Fraunholcz N (2004) Separation of waste plastics by froth flotation––a review, part I. Miner Eng 17:261–268. https://doi.org/10.1016/j.mineng.2003.10.028 | es_ES |
dc.description.references | Fu S, Fang Y, Yuan H, Tan W, Dong Y (2017) Effect of the medium’s density on the hydrocyclonic separation of waste plastics with different densities. Waste Manag 67:27–31. https://doi.org/10.1016/j.wasman.2017.05.019 | es_ES |
dc.description.references | Geyer R, Jambeck JR, Law KL (2017) Production, use, and fate of all plastics ever made. Sci Adv 3:e1700782. https://doi.org/10.1126/sciadv.1700782 | es_ES |
dc.description.references | Gu L, Ozbakkaloglu T (2016) Use of recycled plastics in concrete: A critical review. Waste Manag 51:19–42. https://doi.org/10.1016/j.wasman.2016.03.005 | es_ES |
dc.description.references | Gundupalli SP, Hait S, Thakur A (2017) A review on automated sorting of source-separated municipal solid waste for recycling. Waste Manag 60:56–74. https://doi.org/10.1016/j.wasman.2016.09.015 | es_ES |
dc.description.references | Guney A, Poyraz MI, Kangal O, Burat F (2013) Investigation of thermal treatment on selective separation of post consumer plastics prior to froth flotation. Waste Manag 33:1795–1799. https://doi.org/10.1016/j.wasman.2013.05.006 | es_ES |
dc.description.references | Gupta N, Yadav KK, Kumar V (2015) A review on current status of municipal solid waste management in India. J Environ Sci 37:206–217. https://doi.org/10.1016/j.jes.2015.01.034 | es_ES |
dc.description.references | Hopewell J, Dvorak R, Kosior E (2009) Plastics recycling: challenges and opportunities. Philos Trans R Soc Lond Ser B Biol Sci 364:2115–2126. https://doi.org/10.1098/rstb.2008.0311 | es_ES |
dc.description.references | Hu B, Serranti S, Fraunholcz N, Di Maio F, Bonifazi G (2013) Recycling-oriented characterization of polyolefin packaging waste. Waste Manag 33:574–584. https://doi.org/10.1016/j.wasman.2012.11.018 | es_ES |
dc.description.references | Huang D-Y, Zhou S-G, Hong W, Feng W-F, Tao L (2013) Pollution characteristics of volatile organic compounds, polycyclic aromatic hydrocarbons and phthalate esters emitted from plastic wastes recycling granulation plants in Xingtan Town, South China. Atmos Environ 71:327–334. https://doi.org/10.1016/j.atmosenv.2013.02.011 | es_ES |
dc.description.references | Huysman S, De Schaepmeester J, Ragaert K, Dewulf J, De Meester S (2017) Performance indicators for a circular economy: A case study on post-industrial plastic waste. Resour Conserv Recycl 120:46–54. https://doi.org/10.1016/j.resconrec.2017.01.013 | es_ES |
dc.description.references | Ito M, Tsunekawa M, Ishida E, Kawai K, Takahashi T, Abe N, Hiroyoshi N (2010) Reverse jig separation of shredded floating plastics — separation of polypropylene and high density polyethylene. Int J Miner Process 97:96–99. https://doi.org/10.1016/j.minpro.2010.08.007 | es_ES |
dc.description.references | Jin F-L, Zhao M, Park M, Park S-J (2019) Recent Trends of Foaming in Polymer Processing: A Review. Polymers (Basel) 11:953. https://doi.org/10.3390/polym11060953 | es_ES |
dc.description.references | Kangal MO (2010) Selective Flotation Technique for Separation of PET and HDPE Used in Drinking Water Bottles. Miner Process Extr Metall Rev 31:214–223. https://doi.org/10.1080/08827508.2010.483362 | es_ES |
dc.description.references | Kangal MO, Üçerler Z (2018) Recycling of Virgin and Post-Consumer Polypropylene and High Density Polyethylene. Int Polym Process 33:268–275. https://doi.org/10.3139/217.3506 | es_ES |
dc.description.references | Karmakar GP (2020) Regeneration and Recovery of Plastics. Ref Modul Mater Sci Mater Eng. https://doi.org/10.1016/B978-0-12-820352-1.00045-6 | es_ES |
dc.description.references | Lackner M (2015) Bioplastics-Biobased plastics as renewable and/or biodegradable alternatives to petroplastics. Kirk-Othmer Encycl Chem Technol:1–41. https://doi.org/10.1002/0471238961.koe00006 | es_ES |
dc.description.references | Law KL, Starr N, Siegler TR, Jambeck JR, Mallos NJ, Leonard GH (2020) The United States’ contribution of plastic waste to land and ocean. Sci Adv 6:288. https://doi.org/10.1126/sciadv.abd0288 | es_ES |
dc.description.references | Li M, Qiu J, Xing H, Fan D, Wang S, Li S, Jiang Z, Tang T (2018a) In-situ cooling of adsorbed water to control cellular structure of polypropylene composite foam during CO2 batch foaming process. Polymer (Guildf) 155:116–128. https://doi.org/10.1016/j.polymer.2018.09.034 | es_ES |
dc.description.references | Li R, Lin H, Lan P, Gao J, Huang Y, Wen Y, Yang W (2018b) Lightweight cellulose/carbon fiber composite foam for electromagnetic interference (EMI) shielding. Polymers (Basel) 10:1319. https://doi.org/10.3390/polym10121319 | es_ES |
dc.description.references | Mancheno M, Astudillo S, Arévalo P, Malo I, Naranjo T, Espinoza J (2016) Aprovechamiento energético de residuos plásticos obteniendo combustibles líquidos, por medio de pirólisis. La Granja 23:1. https://doi.org/10.17163/lgr.n23.2016.06 | es_ES |
dc.description.references | Mumbach GD, de Sousa CR, Machado RAF, Bolzan A (2019) Dissolution of adhesive resins present in plastic waste to recover polyolefin by sink-float separation processes. J Environ Manag 243:453–462. https://doi.org/10.1016/j.jenvman.2019.05.021 | es_ES |
dc.description.references | Pita F, Castilho A (2016) Influence of shape and size of the particles on jigging separation of plastics mixture. Waste Manag 48:89–94. https://doi.org/10.1016/j.wasman.2015.10.034 | es_ES |
dc.description.references | Pita F, Castilho A (2017) Separation of plastics by froth flotation. The role of size, shape and density of the particles. Waste Manag 60:91–99. https://doi.org/10.1016/j.wasman.2016.07.041 | es_ES |
dc.description.references | Pol VG, Thiyagarajan P (2010) Remediating plastic waste into carbon nanotubes. J Environ Monit 12:455–459. https://doi.org/10.1039/B914648B | es_ES |
dc.description.references | Pongstabodee S, Kunachitpimol N, Damronglerd S (2008) Combination of three-stage sink–float method and selective flotation technique for separation of mixed post-consumer plastic waste. Waste Manag 28:475–483. https://doi.org/10.1016/j.wasman.2007.03.005 | es_ES |
dc.description.references | Qu Y h, Li Y p, Zou X t, Xu K w, Xue Y t (2020) Microwave treatment combined with wetting agent for an efficient flotation separation of acrylonitrile butadiene styrene (ABS) from plastic mixtures. J Mater Cycles Waste Manag 23:96–106. https://doi.org/10.1007/s10163-020-01099-y | es_ES |
dc.description.references | Rahimi A, García JM (2017) Chemical recycling of waste plastics for new materials production. Nat Rev Chem 1:46. https://doi.org/10.1038/s41570-017-0046 | es_ES |
dc.description.references | Ruj B, Pandey V, Jash P, Srivastava V (2015) Sorting of plastic waste for effective recycling. Int J Appl Sci Eng Res 4. https://doi.org/10.6088/ijaser.04058 | es_ES |
dc.description.references | Serranti S, Luciani V, Bonifazi G, Hu B, Rem PC (2015) An innovative recycling process to obtain pure polyethylene and polypropylene from household waste. Waste Manag 35:12–20. https://doi.org/10.1016/j.wasman.2014.10.017 | es_ES |
dc.description.references | Sharma HB, Vanapalli KR, Cheela VRS, Ranjan VP, Jaglan AK, Dubey B, Goel S, Bhattacharya J (2020) Challenges, opportunities, and innovations for effective solid waste management during and post COVID-19 pandemic. Resour Conserv Recycl 162:105052. https://doi.org/10.1016/j.resconrec.2020.105052 | es_ES |
dc.description.references | Shen H, Forssberg E, Pugh RJ (2001) Selective flotation separation of plastics by particle control. Resour Conserv Recycl 33:37–50. https://doi.org/10.1016/S0921-3449(01)00056-8 | es_ES |
dc.description.references | Shimoiizaka J, Kounosu A, Hayashi Y, Saito K (1976) A new type sink-float separator for waste plastics. J Min Metall Inst Japan 92:675–679. https://doi.org/10.2473/shigentosozai1953.92.1064_675 | es_ES |
dc.description.references | Singh N, Hui D, Singh R, Ahuja IPS, Feo L, Fraternali F (2017) Recycling of plastic solid waste: A state of art review and future applications. Compos Part B Eng 115:409–422. https://doi.org/10.1016/j.compositesb.2016.09.013 | es_ES |
dc.description.references | Takoungsakdakun T, Pongstabodee S (2007) Separation of mixed post-consumer PET–POM–PVC plastic waste using selective flotation. Sep Purif Technol 54:248–252. https://doi.org/10.1016/j.seppur.2006.09.011 | es_ES |
dc.description.references | Tsunekawa M, Naoi B, Ogawa S, Hori K, Hiroyoshi N, Ito M, Hirajima T (2005) Jig separation of plastics from scrapped copy machines. Int J Miner Process 76:67–74. https://doi.org/10.1016/j.minpro.2004.12.001 | es_ES |
dc.description.references | Tue NM, Goto A, Takahashi S, Itai T, Asante KA, Kunisue T, Tanabe S (2016) Release of chlorinated, brominated and mixed halogenated dioxin-related compounds to soils from open burning of e-waste in Agbogbloshie (Accra, Ghana). J Hazard Mater 302:151–157. https://doi.org/10.1016/j.jhazmat.2015.09.062 | es_ES |
dc.description.references | Vazquez YV, Barragán F, Castillo LA, Barbosa SE (2020) Analysis of the relationship between the amount and type of MSW and population socioeconomic level: Bahía Blanca case study, Argentina. Heliyon 6:e04343. https://doi.org/10.1016/j.heliyon.2020.e04343 | es_ES |
dc.description.references | Vitorino de Souza Melaré A, Montenegro González S, Faceli K, Casadei V (2017) Technologies and decision support systems to aid solid-waste management: a systematic review. Waste Manag 59:567–584. https://doi.org/10.1016/j.wasman.2016.10.045 | es_ES |
dc.description.references | Wang C, Wang H, Fu J, Liu Y (2015) Flotation separation of waste plastics for recycling—A review. Waste Manag 41:28–38. https://doi.org/10.1016/j.wasman.2015.03.027 | es_ES |
dc.description.references | Wang C, Wang H, Gu G, Lin Q, Zhang L, Huang L, Zhao J (2016) Ammonia modification for flotation separation of polycarbonate and polystyrene waste plastics. Waste Manag 51:13–18. https://doi.org/10.1016/j.wasman.2016.02.037 | es_ES |
dc.description.references | Wang G, Zhao J, Yu K, Mark LH, Wang G, Gong P, Park CB, Zhao G (2017) Role of elastic strain energy in cell nucleation of polymer foaming and its application for fabricating sub-microcellular TPU microfilms. Polymer (Guildf) 119:28–39. https://doi.org/10.1016/j.polymer.2017.05.016 | es_ES |
dc.description.references | Wang L, Wu Y-K, Ai F-F, Fan J, Xia Z-P, Liu Y (2018) Hierarchical Porous Polyamide 6 by Solution Foaming: Synthesis. Characterization and Properties Polymers (Basel) 10. https://doi.org/10.3390/polym10121310 | es_ES |
dc.description.references | Wang K, Zhang Y, Zhong Y, Luo M, Du Y, Wang L, Wang H (2020) Flotation separation of polyethylene terephthalate from waste packaging plastics through ethylene glycol pretreatment assisted by sonication. Waste Manag 105:309–316. https://doi.org/10.1016/j.wasman.2020.02.021 | es_ES |
dc.description.references | Zhang S, Lin Y, Ye L, Gu Y, Qiu J, Tang T, Li M (2018) Unexpected foaming behavior of heterografted comb-like PS-g-(PS/PE) copolymers with high branching density at semi-solid state under CO2 batching foam. Polymer (Guildf) 146:304–311. https://doi.org/10.1016/j.polymer.2018.05.050 | es_ES |
dc.description.references | Zhang Y, Jiang H, Wang H, Wang C (2020) Separation of hazardous polyvinyl chloride from waste plastics by flotation assisted with surface modification of ammonium persulfate: Process and mechanism. J Hazard Mater 389:121918. https://doi.org/10.1016/j.jhazmat.2019.121918 | es_ES |