Mostrar el registro sencillo del ítem
dc.contributor.author | Martín Furones, Ángel Esteban | es_ES |
dc.contributor.author | Anquela Julián, Ana Belén | es_ES |
dc.contributor.author | Ibañez Asensio, Sara | es_ES |
dc.contributor.author | Baixauli Soria, Carlos | es_ES |
dc.contributor.author | Blanc Clavero, Sara | es_ES |
dc.date.accessioned | 2023-09-25T18:01:54Z | |
dc.date.available | 2023-09-25T18:01:54Z | |
dc.date.issued | 2022-01 | es_ES |
dc.identifier.issn | 1080-5370 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/197088 | |
dc.description.abstract | [EN] The global navigation satellite system interferometric reflectometry is often used to extract information about the environment surrounding the antenna. One of the most important applications is soil moisture monitoring. This manuscript presents the main ideas and implementation decisions needed to write the Python code to transform the derived phase of the interferometric GPS waves, obtained from signal-to-noise ratio data continuously observed during a period of several weeks (or months), to volumetric water content. The main goal of the manuscript is to share the software with the scientific community to help users in the GPS-IR computation. | es_ES |
dc.description.sponsorship | Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | GPS Solutions | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | GNSS-IR reflectometry | es_ES |
dc.subject | Python software | es_ES |
dc.subject | Soil moisture | es_ES |
dc.subject | Signal-to-noise ratio (SNR) | es_ES |
dc.subject.classification | INGENIERIA CARTOGRAFICA, GEODESIA Y FOTOGRAMETRIA | es_ES |
dc.subject.classification | ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES | es_ES |
dc.subject.classification | PRODUCCION VEGETAL | es_ES |
dc.title | Python software to transform GPS SNR wave phases to volumetric water content | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s10291-021-01190-3 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Geodésica, Cartográfica y Topográfica - Escola Tècnica Superior d'Enginyeria Geodèsica, Cartogràfica i Topogràfica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica | es_ES |
dc.description.bibliographicCitation | Martín Furones, ÁE.; Anquela Julián, AB.; Ibañez Asensio, S.; Baixauli Soria, C.; Blanc Clavero, S. (2022). Python software to transform GPS SNR wave phases to volumetric water content. GPS Solutions. 26(1):1-5. https://doi.org/10.1007/s10291-021-01190-3 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s10291-021-01190-3 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 5 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 26 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.pasarela | S\452761 | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | Chen Q, Won D, Akos DM, Small EE (2016) Vegetation using GPS interferometric reflectometry: experimental results with a horizontal polarized antenna. IEEE J Sel Top Appl Earth Obs Remote Sens 9(10):4771–4780 | es_ES |
dc.description.references | Chew CC, Small EE, Larson KM, Zavorotny VU (2014) Effects of near-surface soil moisture on GPS SNR data: development and retrieval algorithm for soil moisture. IEEE T Geosci Remote Sens 52(1):537–543 | es_ES |
dc.description.references | Chew CC, Small EE, Larson KM, Zavorotny UZ (2015) Vegetation sensing using GPS-interferometric reflectometry: theoretical effects of canopy parameters on signal-to-noise ratio data. IEEE Trans Geosci Remote Sens 53(5):2755–2764 | es_ES |
dc.description.references | Chew CC, Small EE, Larson KM (2016) An algorithm for soil moisture estimation using GPS-interferometric reflectometry for bare and vegetated soil. GPS Solut 20(3):525–537 | es_ES |
dc.description.references | Larson KM, Nievinski FG (2013) GPS snow sensing: results from the earthscope plate boundary observatory. GPS Solut 17(1):41–52 | es_ES |
dc.description.references | Larson KM, Small EE (2015) PBO H2O data portal: documentation and derived data products. https://www.unavco.org/data/gps-gnss/derived-products/pbo-h2o/documentation/documentation.html#soil. Accessed Dec 2019 | es_ES |
dc.description.references | Larson KM, Small EE, Gutmann ED, Bilich AL, Axelrad A, Braun JJ (2008a) Using GPS multipath to measure soil moisture fluctuations: initial results. GPS Solut 12(3):173–177 | es_ES |
dc.description.references | Larson KM, Small EE, Gutmann ED, Bilich AL, Braun JJ, Zavorotny VU (2008b) Use of GPS receivers as a soil moisture network for water cycle studies. Geophys Res Lett 35:L24405. https://doi.org/10.1029/2008GL036013 | es_ES |
dc.description.references | Larson KM, Braun JJ, Small EE, Zavorotny VU (2010) GPS multipath and its relation to near-surface soil moisture content. IEEE J Sel Top Appl Earth Obs Remote Sens 3(1):91–99 | es_ES |
dc.description.references | Martín A, Ibañez S, Baixauli C, Blanc S, Anquela AB (2020a) Multi-constellation interferometric reflectometry with mass-market sensors as a solution for soil moisture monitoring. Hydrol Earth Syst Sci. https://doi.org/10.5194/hess-24-3573-2020 | es_ES |
dc.description.references | Martín A, Luján R, Anquela AB (2020b) Python software tools for GNSS interferometric reflectometry (GNSS-IR). GPS Solut 24:94. https://doi.org/10.1007/s10291-020-01010-0 | es_ES |
dc.description.references | Nievinski GG, Larson KM (2014) An open source GPS multipath simulator in Matlab/Octave. GPS Solut 18:473–481. https://doi.org/10.1007/s10291-014-0370-z | es_ES |
dc.description.references | Roesler C, Larson KM (2018) Software tools for GNSS interferometric reflectometry (GNSS-IR). GPS Solut. https://doi.org/10.1007/s10291-018-0744-8 | es_ES |
dc.description.references | Roussel N, Frappart F, Ramillien G, Darroes J, Baup F, Lestarquit L, Ha MC (2016) Detection of soil moisture variations using GPS and GLONASS SNR data for elevation angles ranging from 2 to 70°. IEEE J Sel Top Appl Earth Obs Remote Sens 9(10):4781–4794 | es_ES |
dc.description.references | Small EE, Larson KM, Chew CC, Dong J, Ochsner TE (2016) Validation of GPS-IR soil moisture retrievals: comparison of different algorithms to remove vegetation effects. IEEE J Sel Top Appl Earth Obs Remote Sens 9(10):4759–4770 | es_ES |
dc.description.references | Vey S, Güntner A, Wickert J, Blume T, Ramatschi M (2016) Long-term soil moisture dynamics derived from GNSS interferometric reflectometry: a case study for Sutherland, South Africa. GPS Solut 20:641–654. https://doi.org/10.1007/s10291-015-0474-0 | es_ES |
dc.description.references | Wan W, Larson KM, Small EE, Chew CC, Braun JJ (2015) Using geodetic GPS receivers to measure vegetation water content. GPS Solut 19:237–248 | es_ES |
dc.description.references | Zhang S, Roussel N, Boniface K, Ha MC, Frappart F, Darrozes J, Baup F, Calvet JC (2017) Use of reflected GNSS SNR data to retrieve either soil moisture or vegetation height from a wheat crop. Hydrol Earth Syst Sci 21:4767–4784 | es_ES |
dc.subject.ods | 06.- Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos | es_ES |
dc.subject.ods | 08.- Fomentar el crecimiento económico sostenido, inclusivo y sostenible, el empleo pleno y productivo, y el trabajo decente para todos | es_ES |