Mostrar el registro sencillo del ítem
dc.contributor.author | Riccio, Jennifer | es_ES |
dc.contributor.author | Alcaine, Alejandro | es_ES |
dc.contributor.author | Rocher, Sara | es_ES |
dc.contributor.author | Martínez-Mateu, Laura | es_ES |
dc.contributor.author | Saiz Rodríguez, Francisco Javier | es_ES |
dc.contributor.author | Invers-Rubio, Eric | es_ES |
dc.contributor.author | Guillem Sánchez, María Salud | es_ES |
dc.contributor.author | Martínez, Juan Pablo | es_ES |
dc.contributor.author | Laguna, Pablo | es_ES |
dc.date.accessioned | 2023-09-27T18:02:13Z | |
dc.date.available | 2023-09-27T18:02:13Z | |
dc.date.issued | 2022-09-13 | es_ES |
dc.identifier.issn | 0140-0118 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/197254 | |
dc.description.abstract | [EN] Atrial fibrosis plays a key role in the initiation and progression of atrial fibrillation (AF). Atrial fibrosis is typically identified by a peak-to-peak amplitude of bipolar electrograms (b-EGMs) lower than 0.5 mV, which may be considered as ablation targets. Nevertheless, this approach disregards signal spatiotemporal information and b-EGM sensitivity to catheter orientation. To overcome these limitations, we propose the dominant-to-remaining eigenvalue dominance ratio (EIGDR) of unipolar electrograms (u-EGMs) within neighbor electrode cliques as a waveform dispersion measure, hypothesizing that it is correlated with the presence of fibrosis. A simulated 2D tissue with a fibrosis patch was used for validation. We computed EIGDR maps from both original and time-aligned u-EGMs, denoted as R and R-A, respectively, also mapping the gain in eigenvalue concentration obtained by the alignment, Delta R-A. The performance of each map in detecting fibrosis was evaluated in scenarios including noise and variable electrode-tissue distance. Best results were achieved by R-A, reaching 94% detection accuracy, versus the 86% of b-EGMs voltage maps. The proposed strategy was also tested in real u-EGMs from fibrotic and non- fibrotic areas over 3D electroanatomical maps, supporting the ability of the EIGDRs as fibrosis markers, encouraging further studies to confirm their translation to clinical settings. | es_ES |
dc.description.sponsorship | Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This work was supported by European Union's Framework Programme for Research and Innovation Horizon 2020 (2014-2020) under the Marie Sklodowska-Curie Grant Agreements No. 766082 and No. 860974, by projects PID2019-105674RBI00, PID2019-104881RB-I00 (MICINN) and Aragon Government (Reference Group Biomedical Signal Interpretation and Computational Simulation (BSICoS) T39-20R) cofunded by FEDER 20142020 "Building Europe from Aragon", by fellowship ACIF/2018/174 and Grant PROMETEO/2020/043, both from Direccion General de Politica Cientifica de la Generalitat Valenciana, and by DENIS Project (Volunteer Computer platform) supported through CoMBA 2021-2022 internal projects call from Universidad San Jorge. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Medical & Biological Engineering & Computing | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Atrial fibrosis | es_ES |
dc.subject | Atrial fibrillation (AF) | es_ES |
dc.subject | Bipolar electrograms (b-EGMs) | es_ES |
dc.subject | Eigenvalue dominance ratio (EIGDR) | es_ES |
dc.subject | Unipolar electrograms (u-EGMs) | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Atrial fibrosis identification with unipolar electrogram eigenvalue distribution analysis in multi-electrode arrays | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s11517-022-02648-3 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-104881RB-I00/ES/ANALISIS DE SEÑAL BASADO EN LA FISIOLOGIA PARA EL GUIADO DEL MANEJO Y TERAPIA DE ARRITMIAS CARDIACAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//ACIF%2F2018%2F174//AYUDA PREDOCTORAL GVA-ROCHER VENTURA. PROYECTO: DESARROLLO DE MODELOS COMPUTACIONALES 3D PERSONALIZADOS DE AURICULA PARA LA OPTIMIZACION DEL TRATAMIENTO DE LA FIBRILACION AURICULAR/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105674RB-I00/ES/TOWARDS IMPROVED MANAGEMENT OF CARDIOVASCULAR DISEASES BY INTEGRATIVE IN SILICO-IN VITRO-IN VIVO RESEARCH INTO HEART¿S STRUCTURE, FUNCTION AND AUTONOMIC REGULATION/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2020%2F043//MODELOS IN-SILICO MULTI-FISICOS Y MULTI-ESCALA DEL CORAZON PARA EL DESARROLLO DE NUEVOS METODOS DE PREVENCION, DIAGNOSTICO Y TRATAMIENTO EN MEDICINA PERSONALIZADA (HEART IN-SILICO MODELS)/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/766082/EU | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Gobierno de Aragón//BSICoS T39-20R/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/860974/EU | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Centro de Investigación e Innovación en Bioingeniería - Centre de Recerca i Innovació en Bioenginyeria | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials | es_ES |
dc.description.bibliographicCitation | Riccio, J.; Alcaine, A.; Rocher, S.; Martínez-Mateu, L.; Saiz Rodríguez, FJ.; Invers-Rubio, E.; Guillem Sánchez, MS.... (2022). Atrial fibrosis identification with unipolar electrogram eigenvalue distribution analysis in multi-electrode arrays. Medical & Biological Engineering & Computing. 60(11):3091-3112. https://doi.org/10.1007/s11517-022-02648-3 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s11517-022-02648-3 | es_ES |
dc.description.upvformatpinicio | 3091 | es_ES |
dc.description.upvformatpfin | 3112 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 60 | es_ES |
dc.description.issue | 11 | es_ES |
dc.identifier.pmid | 36098928 | es_ES |
dc.identifier.pmcid | PMC9537244 | es_ES |
dc.relation.pasarela | S\481856 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Gobierno de Aragón | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | COMISION DE LAS COMUNIDADES EUROPEA | es_ES |
dc.description.references | Platonov P (2017) Atrial fibrosis: an obligatory component of arrhythmia mechanisms in atrial fibrillation? J Geriatr Cardiol 14(4):233–237 | es_ES |
dc.description.references | Xintarakou A, Tzeis S, Psarras S, Asvestas D, Vardas P (2020) Atrial fibrosis as a dominant factor for the development of atrial fibrillation: facts and gaps. Europace 22(3):342–351. https://doi.org/10.1093/europace/euaa009 | es_ES |
dc.description.references | Tzeis S, Asvestas D, Vardas P (2019) Atrial fibrosis: translational considerations for the management of af patients. AER J 8(1):37–41 | es_ES |
dc.description.references | Burstein B, Nattel S (2008) Atrial fibrosis: mechanisms and clinical relevance in atrial fibrillation. J Am Coll Cardiol 51(8):802–809. https://doi.org/10.1016/j.jacc.2007.09.064 | es_ES |
dc.description.references | de Boer RA, et al (2019) Towards better definition, quantification and treatment of fibrosis in heart failure. A scientific roadmap by the committee of translational research of the heart failure association (hfa) of the european society of cardiology. Eur J Heart Fail 21(3):272–285 | es_ES |
dc.description.references | Everett TH 4th, Olgin JE (2007) Atrial fibrosis and the mechanisms of atrial fibrillation. Heart Rhythm 4(3 Suppl):S24–S27 | es_ES |
dc.description.references | Calkins H, et al (2017) 2017 hrs/ehra/ecas/aphrs/solaece expert consensus statement on catheter and surgical ablation of atrial fibrillation. Heart Rhythm 14(10):e275–e444. https://doi.org/10.1016/j.hrthm.2017.05.012 | es_ES |
dc.description.references | Riccio J, Alcaine A, Rocher S, Martinez-Mateu L, Laranjo S, Saiz J, Laguna P, Martínez JP (2021) Characterization of atrial propagation patterns and fibrotic substrate with a modified omnipolar electrogram strategy in multi-electrode arrays. Front Physiol 12(674223). https://doi.org/10.3389/fphys.2021.674223 | es_ES |
dc.description.references | Rodríguez-Mañero M, et al (2018) Validating left atrial low voltage areas during atrial fibrillation and atrial flutter using multielectrode automated electroanatomic mapping. JACC: Clin Electrophysiol 4(12):1541–1552. https://doi.org/10.1016/j.jacep.2018.08.015 | es_ES |
dc.description.references | Knackstedt C, Schauerte P, Kirchhof P (2008) Electro-anatomic mapping systems in arrhythmias. Europace 10(Suppl 3):iii28–iii34 | es_ES |
dc.description.references | Yamaguchi T, Fukui A, Node K (2019) Bipolar voltage mapping for the evaluation of atrial substrate: Can we overcome the challenge of directionality? J Atr Fibrillation 11(5):2116. https://doi.org/10.4022/jafib.2116 | es_ES |
dc.description.references | Sim I, Bishop M, O’Neill M, Williams SE (2019) Left atrial voltage mapping: defining and targeting the atrial fibrillation substrate. J Interv Card Electrophysiol 56(3):213–227. https://doi.org/10.1007/s10840-019-00537-8 | es_ES |
dc.description.references | Sánchez J, Luongo G, Nothstein M, Unger LA, Saiz J, Trenor B, Luik A, Dössel O, Loewe A (2021) Using machine learning to characterize atrial fibrotic substrate from intracardiac signals with a hybrid in silico and in vivo dataset. Front Physiol 12(699291). https://doi.org/10.3389/fphys.2021.699291 | es_ES |
dc.description.references | Keller MW, Schuler S, Wilhelms M, Lenis G, Seemann G, Schmitt C, Dössel O, Luik A (2014) Characterization of radiofrequency ablation lesion development based on simulated and measured intracardiac electrograms. IEEE Trans Biomed Eng 61(9):2467–2478. https://doi.org/10.1109/TBME.2014.2322515 | es_ES |
dc.description.references | Campos FO, Wiener T, Prassl AJ, dos Santos RW, Sánchez-Quintana D, Ahammer H, Plank G, Hofer E (2013) Electro-anatomical characterization of atrial microfibrosis in a histologically detailed computer model. IEEE Trans Biomed Eng 60(8):2339–2349. https://doi.org/10.1109/TBME.2013.2256359 | es_ES |
dc.description.references | Maleckar MM, Greenstein JL, Giles WR, Trayanova NA (2009) Electrotonic coupling between human atrial myocytes and fibroblasts alters myocyte excitability and repolarization. Biophys J 97(8):2179–2190. https://doi.org/10.1016/j.bpj.2009.07.054 | es_ES |
dc.description.references | Chelu MG, King JB, Kholmovski EG, Ma J, Gal P, Marashly Q, AlJuaid MA, Kaur G, Silver MA, Johnson KA, Suksaranjit P, Wilson BD, Han FT, Elvan A, Marrouche NF (2018) Atrial fibrosis by late gadolinium enhancement magnetic resonance imaging and catheter ablation of atrial fibrillation: 5-year follow-up data. J Am Heart Assoc 7(23):e006313. https://doi.org/10.1161/JAHA.117.006313 | es_ES |
dc.description.references | Courtemanche M, Ramirez RJ, Nattel S (1998) Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model. Am J Physiol 275(1):H301-H321. https://doi.org/10.1152/ajpheart.1998.275.1.H301 | es_ES |
dc.description.references | Martinez-Mateu L, et al (2018) Factors affecting basket catheter detection of real and phantom rotors in the atria: A computational study. PLoS Comput Biol 14(3):e1006017. https://doi.org/10.1371/journal.pcbi.1006017 | es_ES |
dc.description.references | Tobón C, Villa CAR, Heidenreich E, Romero L, Hornero F, Saiz J (2013) A three-dimensional human atrial model with fiber orientation. Electrograms and arrhythmic activation patterns relationship. PLoS ONE 8(2):e50883. https://doi.org/10.1371/journal.pone.0050883 | es_ES |
dc.description.references | Sánchez J, Gomez JF, Martínez-Mateu L, Romero L, Saiz J, Trenor B (2019) Heterogeneous effects of fibroblast-myocyte coupling in different regions of the human atria under conditions of atrial fibrillation. Front Physiol 10(847). https://doi.org/10.3389/fphys.2019.00847 | es_ES |
dc.description.references | Almeida T, Nothstein M, Li X, Masè M, Ravelli F, Soriano D, Bezerra A, Schlindwein F, Yoneyama T, Dössel O, Ng G, Loewe A (2020) Phase singularities in a cardiac patch model with a non-conductive fibrotic area during atrial fibrillation. In: 2020 Computing in Cardiology (CinC). IEEE. https://doi.org/10.22489/CinC.2020.121 | es_ES |
dc.description.references | Heidenreich EA, Ferrero JM, Doblaré M, Rodríguez JF (2010) Adaptive macro finite elements for the numerical solution of monodomain equations in cardiac electrophysiology. Ann Biomed Eng 38(7):2331–2345. https://doi.org/10.1007/s10439-010-9997-2 | es_ES |
dc.description.references | Caballero R, de la Fuente MG, Gómez R, Barana A, Amorós I, Dolz-Gaitón P, Osuna L, Almendral J, Delpón FAE (2010) In humans, chronic atrial fibrillation decreases the transient outward current and ultrarapid component of the delayed rectifier current differentially on each atria and increases the slow component of the delayed rectifier current in both. J Am Coll Cardiol 55(21):2346–54. https://doi.org/10.1016/j.jacc.2010.02.028 | es_ES |
dc.description.references | Van Wagoner DR, Pond A, Lamorgese M, Rossie S, McCarthy P, Nerbonne J (1999) Atrial L-type Ca2+ currents and human atrial fibrillation. Circ Res 85(5):428–436. https://doi.org/10.1161/01.RES.85.5.428 | es_ES |
dc.description.references | Workman AJ, Kane K, Rankin A (2001) The contribution of ionic currents to changes in refractoriness of human atrial myocytes associated with chronic atrial fibrillation. Cardiovasc Res 52(2):226–235. https://doi.org/10.1016/S0008-6363(01)00380-7 | es_ES |
dc.description.references | Dobrev D, Graf E, Wettwer E, Himmel HM, Hála O, Doerfel C, Christ T, Schüler S, Ravens U (2001) Molecular basis of downregulation of G-protein-coupled inward rectifying K+ current (IK, ACh) in chronic human atrial fibrillation: decrease in GIRK4 mRNA correlates with reduced IK, ACh and muscarinic receptor-mediated shortening of action potentials. Circulation 104(21):2551–2557. https://doi.org/10.1161/hc4601.099466 | es_ES |
dc.description.references | Voigt N, Trausch A, Knaut M, Matschke K, Varró A, Wagoner DRV, Nattel S, Ravens U, Dobrev D (2010) Left-to-right atrial inward rectifier potassium current gradients in patients with paroxysmal versus chronic atrial fibrillation. Circ Arrhythm Electrophysiol 3(5):472–480. https://doi.org/10.1161/CIRCEP.110.954636 | es_ES |
dc.description.references | Bosch RF, Zeng X, Grammer JB, Popovic K, Mewis C, Kühlkamp V (1999) Ionic mechanisms of electrical remodeling in human atrial fibrillation. Cardiovasc Res 44(1):121–131. https://doi.org/10.1016/S0008-6363(99)00178-9 | es_ES |
dc.description.references | Martinez-Mateu L, Romero L, Saiz J, Berenfeld O (2019) Far-field contributions in multi-electrodes atrial recordings blur distinction between anatomical and functional reentries and may cause imaginary phase singularities - a computational study. Comput Biol Med 108:276–287. https://doi.org/10.1016/j.compbiomed.2019.02.022 | es_ES |
dc.description.references | Unger LA, Oesterlein TG, Loewe A, Dössel O (2019) Noise quantification and noise reduction for unipolar and bipolar electrograms. In: 2019 Computing in Cardiology (CinC). IEEE. | es_ES |
dc.description.references | Benito EM, et al (2017) Left atrial fibrosis quantification by late gadolinium-enhanced magnetic resonance: a new method to standardize the thresholds for reproducibility. Europace 19(8):1272–1279. https://doi.org/10.1093/europace/euw219 | es_ES |
dc.description.references | Castells F, Laguna P, Sörnmo L, Bollmann A, Roig JM (2007) Principal Component Analysis in ECG signal processing. EURASIP J Adv Signal Process 2007(74580):1–21. | es_ES |
dc.description.references | Woody C (1967) Characterization of an adaptive filter for the analysis of variable latency neuroelectric signals. Med Biol Engng 5:539–554. https://doi.org/10.1007/BF02474247 | es_ES |
dc.description.references | Sörnmo L, Laguna P (2005) Bioelectrical Signal Processing in Cardiac and Neurological Applications. Amsterdam: Elsevier (Academic Press) | es_ES |
dc.description.references | Laguna P, et al (2018) Eigenvalue-based time delay estimation of repetitive biomedical signals. Digit Signal Process 75:107–119 | es_ES |
dc.description.references | Riccio J, Rocher S, Martinez-Mateu L, Alcaine A, Saiz J, Martínez JP, Laguna, P (2020) Unipolar electrogram eigenvalue distribution analysis for the identification of atrial fibrosis. In: 2020 Computing in Cardiology (CinC). IEEE. https://doi.org/10.22489/CinC.2020.434 | es_ES |
dc.description.references | Nezlobinsky T, Solovyova O, Panfilov AV (2020) Anisotropic conduction in the myocardium due to fibrosis: the effect of texture on wave propagation. Scientific Reports 10(764). https://doi.org/10.1038/s41598-020-57449-1 | es_ES |
dc.description.references | Palacio LC, Ugarte JP, Saiz J, Tobón C (2021) The effects of fibrotic cell type and its density on atrial fibrillation dynamics: An in silico study. Cells 10(10). https://doi.org/10.3390/cells10102769 | es_ES |
dc.description.references | Vigmond E, Pashaei A, Amraoui S, Cochet H, Hassaguerre M (2016) Percolation as a mechanism to explain atrial fractionated electrograms and reentry in a fibrosis model based on imaging data. Heart Rhythm 13(7):1536–1543. https://doi.org/10.1016/j.hrthm.2016.03.019 | es_ES |
dc.description.references | Metz CE (1978) Basic principles of roc analysis. Seminars in Nuclear Medicine 8(4):283–298. https://doi.org/10.1016/S0001-2998(78)80014-2 | es_ES |
dc.description.references | Laţcu DG, Bun SS, Arroyo RC, Wedn AM, Benaich FA, Hasni K, Enache B, Saoudi N (2019) Scar identification, quantification, and characterization in complex atrial tachycardia: a path to targeted ablation? Europace 21:i21–i26. https://doi.org/10.1093/europace/euy182 | es_ES |
dc.description.references | Caixal G, et al (2021) Accuracy of left atrial fibrosis detection with cardiac magnetic resonance: correlation of late gadolinium enhancement with endocardial voltage and conduction velocity. Europace 23(3):380–388. https://doi.org/10.1093/europace/euaa313 | es_ES |