- -

Atrial fibrosis identification with unipolar electrogram eigenvalue distribution analysis in multi-electrode arrays

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Atrial fibrosis identification with unipolar electrogram eigenvalue distribution analysis in multi-electrode arrays

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Riccio, Jennifer es_ES
dc.contributor.author Alcaine, Alejandro es_ES
dc.contributor.author Rocher, Sara es_ES
dc.contributor.author Martínez-Mateu, Laura es_ES
dc.contributor.author Saiz Rodríguez, Francisco Javier es_ES
dc.contributor.author Invers-Rubio, Eric es_ES
dc.contributor.author Guillem Sánchez, María Salud es_ES
dc.contributor.author Martínez, Juan Pablo es_ES
dc.contributor.author Laguna, Pablo es_ES
dc.date.accessioned 2023-09-27T18:02:13Z
dc.date.available 2023-09-27T18:02:13Z
dc.date.issued 2022-09-13 es_ES
dc.identifier.issn 0140-0118 es_ES
dc.identifier.uri http://hdl.handle.net/10251/197254
dc.description.abstract [EN] Atrial fibrosis plays a key role in the initiation and progression of atrial fibrillation (AF). Atrial fibrosis is typically identified by a peak-to-peak amplitude of bipolar electrograms (b-EGMs) lower than 0.5 mV, which may be considered as ablation targets. Nevertheless, this approach disregards signal spatiotemporal information and b-EGM sensitivity to catheter orientation. To overcome these limitations, we propose the dominant-to-remaining eigenvalue dominance ratio (EIGDR) of unipolar electrograms (u-EGMs) within neighbor electrode cliques as a waveform dispersion measure, hypothesizing that it is correlated with the presence of fibrosis. A simulated 2D tissue with a fibrosis patch was used for validation. We computed EIGDR maps from both original and time-aligned u-EGMs, denoted as R and R-A, respectively, also mapping the gain in eigenvalue concentration obtained by the alignment, Delta R-A. The performance of each map in detecting fibrosis was evaluated in scenarios including noise and variable electrode-tissue distance. Best results were achieved by R-A, reaching 94% detection accuracy, versus the 86% of b-EGMs voltage maps. The proposed strategy was also tested in real u-EGMs from fibrotic and non- fibrotic areas over 3D electroanatomical maps, supporting the ability of the EIGDRs as fibrosis markers, encouraging further studies to confirm their translation to clinical settings. es_ES
dc.description.sponsorship Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This work was supported by European Union's Framework Programme for Research and Innovation Horizon 2020 (2014-2020) under the Marie Sklodowska-Curie Grant Agreements No. 766082 and No. 860974, by projects PID2019-105674RBI00, PID2019-104881RB-I00 (MICINN) and Aragon Government (Reference Group Biomedical Signal Interpretation and Computational Simulation (BSICoS) T39-20R) cofunded by FEDER 20142020 "Building Europe from Aragon", by fellowship ACIF/2018/174 and Grant PROMETEO/2020/043, both from Direccion General de Politica Cientifica de la Generalitat Valenciana, and by DENIS Project (Volunteer Computer platform) supported through CoMBA 2021-2022 internal projects call from Universidad San Jorge. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Medical & Biological Engineering & Computing es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Atrial fibrosis es_ES
dc.subject Atrial fibrillation (AF) es_ES
dc.subject Bipolar electrograms (b-EGMs) es_ES
dc.subject Eigenvalue dominance ratio (EIGDR) es_ES
dc.subject Unipolar electrograms (u-EGMs) es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Atrial fibrosis identification with unipolar electrogram eigenvalue distribution analysis in multi-electrode arrays es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11517-022-02648-3 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-104881RB-I00/ES/ANALISIS DE SEÑAL BASADO EN LA FISIOLOGIA PARA EL GUIADO DEL MANEJO Y TERAPIA DE ARRITMIAS CARDIACAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACIF%2F2018%2F174//AYUDA PREDOCTORAL GVA-ROCHER VENTURA. PROYECTO: DESARROLLO DE MODELOS COMPUTACIONALES 3D PERSONALIZADOS DE AURICULA PARA LA OPTIMIZACION DEL TRATAMIENTO DE LA FIBRILACION AURICULAR/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105674RB-I00/ES/TOWARDS IMPROVED MANAGEMENT OF CARDIOVASCULAR DISEASES BY INTEGRATIVE IN SILICO-IN VITRO-IN VIVO RESEARCH INTO HEART¿S STRUCTURE, FUNCTION AND AUTONOMIC REGULATION/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2020%2F043//MODELOS IN-SILICO MULTI-FISICOS Y MULTI-ESCALA DEL CORAZON PARA EL DESARROLLO DE NUEVOS METODOS DE PREVENCION, DIAGNOSTICO Y TRATAMIENTO EN MEDICINA PERSONALIZADA (HEART IN-SILICO MODELS)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/766082/EU es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Gobierno de Aragón//BSICoS T39-20R/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/860974/EU es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Centro de Investigación e Innovación en Bioingeniería - Centre de Recerca i Innovació en Bioenginyeria es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.description.bibliographicCitation Riccio, J.; Alcaine, A.; Rocher, S.; Martínez-Mateu, L.; Saiz Rodríguez, FJ.; Invers-Rubio, E.; Guillem Sánchez, MS.... (2022). Atrial fibrosis identification with unipolar electrogram eigenvalue distribution analysis in multi-electrode arrays. Medical & Biological Engineering & Computing. 60(11):3091-3112. https://doi.org/10.1007/s11517-022-02648-3 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s11517-022-02648-3 es_ES
dc.description.upvformatpinicio 3091 es_ES
dc.description.upvformatpfin 3112 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 60 es_ES
dc.description.issue 11 es_ES
dc.identifier.pmid 36098928 es_ES
dc.identifier.pmcid PMC9537244 es_ES
dc.relation.pasarela S\481856 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Gobierno de Aragón es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder COMISION DE LAS COMUNIDADES EUROPEA es_ES
dc.description.references Platonov P (2017) Atrial fibrosis: an obligatory component of arrhythmia mechanisms in atrial fibrillation? J Geriatr Cardiol 14(4):233–237 es_ES
dc.description.references Xintarakou A, Tzeis S, Psarras S, Asvestas D, Vardas P (2020) Atrial fibrosis as a dominant factor for the development of atrial fibrillation: facts and gaps. Europace 22(3):342–351. https://doi.org/10.1093/europace/euaa009 es_ES
dc.description.references Tzeis S, Asvestas D, Vardas P (2019) Atrial fibrosis: translational considerations for the management of af patients. AER J 8(1):37–41 es_ES
dc.description.references Burstein B, Nattel S (2008) Atrial fibrosis: mechanisms and clinical relevance in atrial fibrillation. J Am Coll Cardiol 51(8):802–809. https://doi.org/10.1016/j.jacc.2007.09.064 es_ES
dc.description.references de Boer RA, et al (2019) Towards better definition, quantification and treatment of fibrosis in heart failure. A scientific roadmap by the committee of translational research of the heart failure association (hfa) of the european society of cardiology. Eur J Heart Fail 21(3):272–285 es_ES
dc.description.references Everett TH 4th, Olgin JE (2007) Atrial fibrosis and the mechanisms of atrial fibrillation. Heart Rhythm 4(3 Suppl):S24–S27 es_ES
dc.description.references Calkins H, et al (2017) 2017 hrs/ehra/ecas/aphrs/solaece expert consensus statement on catheter and surgical ablation of atrial fibrillation. Heart Rhythm 14(10):e275–e444. https://doi.org/10.1016/j.hrthm.2017.05.012 es_ES
dc.description.references Riccio J, Alcaine A, Rocher S, Martinez-Mateu L, Laranjo S, Saiz J, Laguna P, Martínez JP (2021) Characterization of atrial propagation patterns and fibrotic substrate with a modified omnipolar electrogram strategy in multi-electrode arrays. Front Physiol 12(674223). https://doi.org/10.3389/fphys.2021.674223 es_ES
dc.description.references Rodríguez-Mañero M, et al (2018) Validating left atrial low voltage areas during atrial fibrillation and atrial flutter using multielectrode automated electroanatomic mapping. JACC: Clin Electrophysiol 4(12):1541–1552. https://doi.org/10.1016/j.jacep.2018.08.015 es_ES
dc.description.references Knackstedt C, Schauerte P, Kirchhof P (2008) Electro-anatomic mapping systems in arrhythmias. Europace 10(Suppl 3):iii28–iii34 es_ES
dc.description.references Yamaguchi T, Fukui A, Node K (2019) Bipolar voltage mapping for the evaluation of atrial substrate: Can we overcome the challenge of directionality? J Atr Fibrillation 11(5):2116. https://doi.org/10.4022/jafib.2116 es_ES
dc.description.references Sim I, Bishop M, O’Neill M, Williams SE (2019) Left atrial voltage mapping: defining and targeting the atrial fibrillation substrate. J Interv Card Electrophysiol 56(3):213–227. https://doi.org/10.1007/s10840-019-00537-8 es_ES
dc.description.references Sánchez J, Luongo G, Nothstein M, Unger LA, Saiz J, Trenor B, Luik A, Dössel O, Loewe A (2021) Using machine learning to characterize atrial fibrotic substrate from intracardiac signals with a hybrid in silico and in vivo dataset. Front Physiol 12(699291). https://doi.org/10.3389/fphys.2021.699291 es_ES
dc.description.references Keller MW, Schuler S, Wilhelms M, Lenis G, Seemann G, Schmitt C, Dössel O, Luik A (2014) Characterization of radiofrequency ablation lesion development based on simulated and measured intracardiac electrograms. IEEE Trans Biomed Eng 61(9):2467–2478. https://doi.org/10.1109/TBME.2014.2322515 es_ES
dc.description.references Campos FO, Wiener T, Prassl AJ, dos Santos RW, Sánchez-Quintana D, Ahammer H, Plank G, Hofer E (2013) Electro-anatomical characterization of atrial microfibrosis in a histologically detailed computer model. IEEE Trans Biomed Eng 60(8):2339–2349. https://doi.org/10.1109/TBME.2013.2256359 es_ES
dc.description.references Maleckar MM, Greenstein JL, Giles WR, Trayanova NA (2009) Electrotonic coupling between human atrial myocytes and fibroblasts alters myocyte excitability and repolarization. Biophys J 97(8):2179–2190. https://doi.org/10.1016/j.bpj.2009.07.054 es_ES
dc.description.references Chelu MG, King JB, Kholmovski EG, Ma J, Gal P, Marashly Q, AlJuaid MA, Kaur G, Silver MA, Johnson KA, Suksaranjit P, Wilson BD, Han FT, Elvan A, Marrouche NF (2018) Atrial fibrosis by late gadolinium enhancement magnetic resonance imaging and catheter ablation of atrial fibrillation: 5-year follow-up data. J Am Heart Assoc 7(23):e006313. https://doi.org/10.1161/JAHA.117.006313 es_ES
dc.description.references Courtemanche M, Ramirez RJ, Nattel S (1998) Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model. Am J Physiol 275(1):H301-H321. https://doi.org/10.1152/ajpheart.1998.275.1.H301 es_ES
dc.description.references Martinez-Mateu L, et al (2018) Factors affecting basket catheter detection of real and phantom rotors in the atria: A computational study. PLoS Comput Biol 14(3):e1006017. https://doi.org/10.1371/journal.pcbi.1006017 es_ES
dc.description.references Tobón C, Villa CAR, Heidenreich E, Romero L, Hornero F, Saiz J (2013) A three-dimensional human atrial model with fiber orientation. Electrograms and arrhythmic activation patterns relationship. PLoS ONE 8(2):e50883. https://doi.org/10.1371/journal.pone.0050883 es_ES
dc.description.references Sánchez J, Gomez JF, Martínez-Mateu L, Romero L, Saiz J, Trenor B (2019) Heterogeneous effects of fibroblast-myocyte coupling in different regions of the human atria under conditions of atrial fibrillation. Front Physiol 10(847). https://doi.org/10.3389/fphys.2019.00847 es_ES
dc.description.references Almeida T, Nothstein M, Li X, Masè M, Ravelli F, Soriano D, Bezerra A, Schlindwein F, Yoneyama T, Dössel O, Ng G, Loewe A (2020) Phase singularities in a cardiac patch model with a non-conductive fibrotic area during atrial fibrillation. In: 2020 Computing in Cardiology (CinC). IEEE. https://doi.org/10.22489/CinC.2020.121 es_ES
dc.description.references Heidenreich EA, Ferrero JM, Doblaré M, Rodríguez JF (2010) Adaptive macro finite elements for the numerical solution of monodomain equations in cardiac electrophysiology. Ann Biomed Eng 38(7):2331–2345. https://doi.org/10.1007/s10439-010-9997-2 es_ES
dc.description.references Caballero R, de la Fuente MG, Gómez R, Barana A, Amorós I, Dolz-Gaitón P, Osuna L, Almendral J, Delpón FAE (2010) In humans, chronic atrial fibrillation decreases the transient outward current and ultrarapid component of the delayed rectifier current differentially on each atria and increases the slow component of the delayed rectifier current in both. J Am Coll Cardiol 55(21):2346–54. https://doi.org/10.1016/j.jacc.2010.02.028 es_ES
dc.description.references Van Wagoner DR, Pond A, Lamorgese M, Rossie S, McCarthy P, Nerbonne J (1999) Atrial L-type Ca2+ currents and human atrial fibrillation. Circ Res 85(5):428–436. https://doi.org/10.1161/01.RES.85.5.428 es_ES
dc.description.references Workman AJ, Kane K, Rankin A (2001) The contribution of ionic currents to changes in refractoriness of human atrial myocytes associated with chronic atrial fibrillation. Cardiovasc Res 52(2):226–235. https://doi.org/10.1016/S0008-6363(01)00380-7 es_ES
dc.description.references Dobrev D, Graf E, Wettwer E, Himmel HM, Hála O, Doerfel C, Christ T, Schüler S, Ravens U (2001) Molecular basis of downregulation of G-protein-coupled inward rectifying K+ current (IK, ACh) in chronic human atrial fibrillation: decrease in GIRK4 mRNA correlates with reduced IK, ACh and muscarinic receptor-mediated shortening of action potentials. Circulation 104(21):2551–2557. https://doi.org/10.1161/hc4601.099466 es_ES
dc.description.references Voigt N, Trausch A, Knaut M, Matschke K, Varró A, Wagoner DRV, Nattel S, Ravens U, Dobrev D (2010) Left-to-right atrial inward rectifier potassium current gradients in patients with paroxysmal versus chronic atrial fibrillation. Circ Arrhythm Electrophysiol 3(5):472–480. https://doi.org/10.1161/CIRCEP.110.954636 es_ES
dc.description.references Bosch RF, Zeng X, Grammer JB, Popovic K, Mewis C, Kühlkamp V (1999) Ionic mechanisms of electrical remodeling in human atrial fibrillation. Cardiovasc Res 44(1):121–131. https://doi.org/10.1016/S0008-6363(99)00178-9 es_ES
dc.description.references Martinez-Mateu L, Romero L, Saiz J, Berenfeld O (2019) Far-field contributions in multi-electrodes atrial recordings blur distinction between anatomical and functional reentries and may cause imaginary phase singularities - a computational study. Comput Biol Med 108:276–287. https://doi.org/10.1016/j.compbiomed.2019.02.022 es_ES
dc.description.references Unger LA, Oesterlein TG, Loewe A, Dössel O (2019) Noise quantification and noise reduction for unipolar and bipolar electrograms. In: 2019 Computing in Cardiology (CinC). IEEE. es_ES
dc.description.references Benito EM, et al (2017) Left atrial fibrosis quantification by late gadolinium-enhanced magnetic resonance: a new method to standardize the thresholds for reproducibility. Europace 19(8):1272–1279. https://doi.org/10.1093/europace/euw219 es_ES
dc.description.references Castells F, Laguna P, Sörnmo L, Bollmann A, Roig JM (2007) Principal Component Analysis in ECG signal processing. EURASIP J Adv Signal Process 2007(74580):1–21.  es_ES
dc.description.references Woody C (1967) Characterization of an adaptive filter for the analysis of variable latency neuroelectric signals. Med Biol Engng 5:539–554. https://doi.org/10.1007/BF02474247 es_ES
dc.description.references Sörnmo L, Laguna P (2005) Bioelectrical Signal Processing in Cardiac and Neurological Applications. Amsterdam: Elsevier (Academic Press) es_ES
dc.description.references Laguna P, et al (2018) Eigenvalue-based time delay estimation of repetitive biomedical signals. Digit Signal Process 75:107–119 es_ES
dc.description.references Riccio J, Rocher S, Martinez-Mateu L, Alcaine A, Saiz J, Martínez JP, Laguna, P (2020) Unipolar electrogram eigenvalue distribution analysis for the identification of atrial fibrosis. In: 2020 Computing in Cardiology (CinC). IEEE. https://doi.org/10.22489/CinC.2020.434 es_ES
dc.description.references Nezlobinsky T, Solovyova O, Panfilov AV (2020) Anisotropic conduction in the myocardium due to fibrosis: the effect of texture on wave propagation. Scientific Reports 10(764). https://doi.org/10.1038/s41598-020-57449-1 es_ES
dc.description.references Palacio LC, Ugarte JP, Saiz J, Tobón C (2021) The effects of fibrotic cell type and its density on atrial fibrillation dynamics: An in silico study. Cells 10(10). https://doi.org/10.3390/cells10102769 es_ES
dc.description.references Vigmond E, Pashaei A, Amraoui S, Cochet H, Hassaguerre M (2016) Percolation as a mechanism to explain atrial fractionated electrograms and reentry in a fibrosis model based on imaging data. Heart Rhythm 13(7):1536–1543. https://doi.org/10.1016/j.hrthm.2016.03.019 es_ES
dc.description.references Metz CE (1978) Basic principles of roc analysis. Seminars in Nuclear Medicine 8(4):283–298. https://doi.org/10.1016/S0001-2998(78)80014-2 es_ES
dc.description.references Laţcu DG, Bun SS, Arroyo RC, Wedn AM, Benaich FA, Hasni K, Enache B, Saoudi N (2019) Scar identification, quantification, and characterization in complex atrial tachycardia: a path to targeted ablation? Europace 21:i21–i26. https://doi.org/10.1093/europace/euy182 es_ES
dc.description.references Caixal G, et al (2021) Accuracy of left atrial fibrosis detection with cardiac magnetic resonance: correlation of late gadolinium enhancement with endocardial voltage and conduction velocity. Europace 23(3):380–388. https://doi.org/10.1093/europace/euaa313 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem