Mostrar el registro sencillo del ítem
dc.contributor.author | López Alfonso, Salvador | es_ES |
dc.contributor.author | López Pellicer, Manuel | es_ES |
dc.contributor.author | Moll López, Santiago Emmanuel | es_ES |
dc.date.accessioned | 2023-09-29T18:05:08Z | |
dc.date.available | 2023-09-29T18:05:08Z | |
dc.date.issued | 2021-09 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/197366 | |
dc.description.abstract | [EN] A local convex space $E$ is said to be distinguished if its strong dual $E_{\beta }^{\prime }$ has the topology $\beta (E^{\prime },(E_{\beta}^{\prime })^{\prime })$, i.e., if $E_{\beta }^{\prime }$ is barrelled. The distinguished property of the local convex space $C_{p}\left( X\right) $ of real-valued functions on a Tychonoff space $X$, equipped with the pointwise topology on $X$, has recently aroused great interest among analysts and $C_{p}$-theorists, obtaining very interesting properties and nice characterizations. For instance, it has recently been obtained that a space $C_{p}\left( X\right) $ is distinguished if and only if any function $ f\in \mathbb{R}^{X}$ belongs to the pointwise closure of a pointwise bounded set in $C\left( X\right) $. The extensively studied distinguished properties in the injective tensor products $C_{p}\left( X\right) \otimes _{\varepsilon }E$ and in $C_{p}(X,E)$ contrasts with the few distinguished properties of injective tensor products related to the dual space $L_{p}\left( X\right) $ of $C_{p}\left( X\right) $ endowed with the weak* topology, as well as to the weak* dual of $C_{p}(X,E)$. To partially fill this gap, some distinguished properties in the injective tensor product space $L_{p}\left(X\right) \otimes _{\varepsilon }E$ are presented and a characterization of the distinguished property of the weak* dual of $C_{p}(X,E)$ for wide classes of spaces $X$ and $E$ is provided. | es_ES |
dc.description.sponsorship | This research was funded for the second named author by grant PGC2018-094431-B-I00 of Ministry of Science, Innovation and Universities of Spain. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Axioms | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Distinguished space | es_ES |
dc.subject | Injective and projective tensor product | es_ES |
dc.subject | Vector-valued continuous function | es_ES |
dc.subject | Fréchet space | es_ES |
dc.subject | Nuclear space | es_ES |
dc.subject.classification | CONSTRUCCIONES ARQUITECTONICAS | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Distinguished Property in Tensor Products and Weak* Dual Spaces | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/axioms10030151 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-094431-B-I00/ES/ESPACIOS DE FUNCIONES: FUNCIONES ANALITICAS Y OPERADORES DE COMPOSICION. RENORMAMIENTOS Y TOPOLOGIA DESCRIPTIVA/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Arquitectura - Escola Tècnica Superior d'Arquitectura | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny | es_ES |
dc.description.bibliographicCitation | López Alfonso, S.; López Pellicer, M.; Moll López, SE. (2021). Distinguished Property in Tensor Products and Weak* Dual Spaces. Axioms. 10(3):1-7. https://doi.org/10.3390/axioms10030151 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/axioms10030151 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 7 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.description.issue | 3 | es_ES |
dc.identifier.eissn | 2075-1680 | es_ES |
dc.relation.pasarela | S\441970 | es_ES |
dc.contributor.funder | MINISTERIO DE CIENCIA, INNOVACIÓN y UNIVERSIDADES | es_ES |