- -

Effect of acetylsalicylic acid and ammonium sulphate on productive and physiological parameters in Stipa caudata under water shortage conditions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Effect of acetylsalicylic acid and ammonium sulphate on productive and physiological parameters in Stipa caudata under water shortage conditions

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Molina, Julio es_ES
dc.contributor.author González-Orenga, Sara es_ES
dc.contributor.author Vicente, Oscar es_ES
dc.contributor.author Boscaiu, Monica es_ES
dc.contributor.author Llinares Palacios, Josep Vicent es_ES
dc.contributor.author Zambrano, Francisco es_ES
dc.contributor.author Santibáñez, Claudia es_ES
dc.date.accessioned 2023-10-02T18:01:28Z
dc.date.available 2023-10-02T18:01:28Z
dc.date.issued 2022-03-01 es_ES
dc.identifier.issn 0255-965X es_ES
dc.identifier.uri http://hdl.handle.net/10251/197437
dc.description.abstract [EN] Stipa caudata is a grass native to low rainfall areas in Argentina and Chile, considered an excellent potential candidate for biofuel production or soil restoration programmes. This study aimed at analysing the effects of ammonium sulphate (AMS) and acetylsalicylic acid (ASA) on the productivity and biochemical traits of plants of this species under water scarcity conditions. The experimental work was carried out on plants grown outdoors using a randomised block plot design. Several yield and biochemical parameters related to resistance to water scarcity were analysed in plants treated with AMS or ASA. Plants in the treatments with ASA and AMS had higher total chlorophyll content than the others. Concerning ion content, water-restricted plants treated with AMS had similar values to irrigated plants. Regarding the osmoprotectants and antioxidants, treated plants had increased concentrations of proline and total flavonoids. Under water stress, plants had higher APX activity and there was an A x B interaction for CAT and SOD activity. The results obtained show that the use of ASA and AMS in some crops or in environmental restoration programmes could be a useful tool to cope with future climate scenarios of water scarcity es_ES
dc.language Inglés es_ES
dc.publisher AcademicPres (EAP) Publishing House es_ES
dc.relation.ispartof Notulae Botanicae Horti Agrobotanici Cluj-Napoca es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Oxidative stress es_ES
dc.subject Stipa caudata es_ES
dc.subject Water shortage condition es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.subject.classification BOTANICA es_ES
dc.subject.classification EDAFOLOGIA Y QUIMICA AGRICOLA es_ES
dc.title Effect of acetylsalicylic acid and ammonium sulphate on productive and physiological parameters in Stipa caudata under water shortage conditions es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.15835/nbha50112645 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Politécnica Superior de Gandia - Escola Politècnica Superior de Gandia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural es_ES
dc.description.bibliographicCitation Molina, J.; González-Orenga, S.; Vicente, O.; Boscaiu, M.; Llinares Palacios, JV.; Zambrano, F.; Santibáñez, C. (2022). Effect of acetylsalicylic acid and ammonium sulphate on productive and physiological parameters in Stipa caudata under water shortage conditions. Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 50(1):1-17. https://doi.org/10.15835/nbha50112645 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.15835/nbha50112645 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 17 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 50 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\460209 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Aebi H (1984). Catalase in vitro. Methods in Enzymology 105:121-126. https://doi.org/10.1016/S0076-6879(84)05016-3 es_ES
dc.description.references Akıncı Ş, and Lösel DM (2012). Plant water-stress response mechanisms. In: Rahman M, Hasegawa H (Eds). Water Stress InTech Press, Rijeka, Croatia, pp 15-42. es_ES
dc.description.references Agromet (2018). Chilean climate variables. Retrieved December 30 2021 from https://www.agromet.cl es_ES
dc.description.references Apel K, Hirt H (2004). Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Reviews in Plant Biology 55:373-399. https://doi.org/10.1146/annurev.arplant.55.031903.141701 es_ES
dc.description.references Abdellaoui R, Boughalleb F, Chebil Z, Mahmoudi M, Belgacem AO (2017). Physiological, anatomical and antioxidant responses to salinity in the Mediterranean pastoral grass plant Stipa lagascae. Crop Pasture Science 68(9):872-884. https://doi.org/10.1071/CP16365 es_ES
dc.description.references Al Hassan M, Estrelles E, Soriano P, López-Gresa MP, Bellés JM, Boscaiu M, Vicente O (2017). Unraveling salt tolerance mechanisms in halophytes: A comparative study on four Mediterranean Limonium species with different geographic distribution patterns. Frontiers in Plant Science 8. https://doi.org/10.3389/fpls.2017.01438 es_ES
dc.description.references Awate PD, Gaikwad DK (2014). Influence of growth regulators on secondary metabolites of medicinally important oil yielding plant Simarouba glauca DC. Journal of Physiology and Biochemistry 10(1):222-229. es_ES
dc.description.references Bates LS, Waldren RP, Teare ID (1973). Rapid determination of free proline for water-stress studies. Plant and Soil 39(1):205-207. https://doi.org/10.1007/BF00018060 es_ES
dc.description.references Bastiani MO, Roma-Burgos N, Langaro AC, Salas-Perez RA, Rouse CE, Fipke MV, Lamego FP (2021). Ammonium sulfate improves the efficacy of glyphosate on South African lovegrass (Eragrostis plana) under water stress. Weed Science 69:167-176. https://doi.org/10.1017/wsc.2020.97 es_ES
dc.description.references Beyer WF, Fridovich I (1987). Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Annals of Biochemisry 161:559-566. https://doi.org/10.1016/0003-2697(87)90489-1 es_ES
dc.description.references Blainski A, Lopes GC, De Mello JCP (2013). Application and analysis of the Folin Ciocalteu method for the determination of the total phenolic content from Limonium brasiliense L. Molecules 18(6):6852-6865. https://doi.org/10.3390/molecules18066852 es_ES
dc.description.references Bradford MM (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilising the principle of protein-dye binding. Annal of Biochemistry 72(1-2):248-254. https://doi.org/10.1016/0003-2697(76)90527-3 es_ES
dc.description.references Connell JP, Mullet JE (1986). Pea chloroplast glutathione reductase: purification and characterisation. Plant Physiology 82(2):351-356. https://doi.org/10.1104/pp.82.2.351 es_ES
dc.description.references Das K, Roychoudhury A (2014). Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Frontiers in Plant Science 2:1-13. https://doi.org/10.3389/fenvs.2014.00053 es_ES
dc.description.references Farooq M, Wahid A, Kobayashi NSMA, Fujita DB, Basra SMA (2009). Plant drought stress: effects, mechanisms and management. Journal of Sustainable Agricu;ture 153-188. https://doi.org/10.1007/978-90-481-2666-8_12 es_ES
dc.description.references Farooq A, Bukhari SA, Akram NA, Ashraf M, Wijaya L, Alyemeni MN, Ahmad P (2020). Exogenously applied ascorbic acid-mediated changes in osmoprotection and oxidative defense system enhanced water stress tolerance in different cultivars of safflower (Carthamus tinctorious L.). Plants 9:104. https://doi.org/10.3390/plants9010104 es_ES
dc.description.references Gil R, Bautista I, Boscaiu M, Lidón A, Wankhade S, Sánchez H, ... Vicente O (2014). Responses of five Mediterranean halophytes to seasonal changes in environmental conditions. AoB Plants 6. es_ES
dc.description.references Giansoldati V, Tassi E, Morelli E, Gabellieri E, Pedron F, Barbafieri M (2012). Chemosphere nitrogen fertiliser improves boron phytoextraction by Brassica juncea grown in contaminated sediments and alleviates plant stress. Chemosphere 87:1119-1125. https://doi.org/10.1016/j.chemosphere.2012.02.005 es_ES
dc.description.references Gunes A, Inal A, Alpaslan M, Eraslan F, Bagci EG, Cicek N (2007). Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. Journal of Plant Physiology 164:728-736. https://doi.org/10.1016/j.jplph.2005.12.009 es_ES
dc.description.references Guo B, Liang YC, Zhu Y, G, Zhao FJ (2007). Role of salicylic acid in alleviating oxidative damage in rice roots (Oryza sativa) subjected to cadmium stress. Environmental Pollution 147(3):743-749. https://doi.org/10.1016/j.envpol.2006.09.007 es_ES
dc.description.references Hassanein RA, Amin AAE, Rashad ESM, Ali H (2015). Effect of thiourea and salicylic acid on antioxidant defense of wheat plants under drought stress. International Journal of ChemTech Research 7(01):346-354. es_ES
dc.description.references Hessini K, Hamed KB, Gandour M, Mejri M, Abdelly C, Cruz C (2013). Ammonium nutrition in the halophyte Spartina alterniflora under salt stress: evidence for a priming effect of ammonium?. Plant Soil 370(1):163-173. https://doi.org/10.1007/s11104-013-1616-1 es_ES
dc.description.references Hodges DM, Delong JM, Forney CF, Prange RK (1999). Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604-611. https://doi.org/10.1007/s004250050524 es_ES
dc.description.references Hussain I, Rasheed R, Ashraf MA, Mohsin M, Shah SMA, Rashid DA, Akram M, Nisar J, Riaz M (2020). Foliar applied acetylsalicylic acid induced growth and key biochemical changes in chickpea (Cicer arietinum L.) under drought stress. Dose-Response 18:1-13. https://doi.org/10.1177/1559325820956801 es_ES
dc.description.references IPCC (2018). Global warming of 1.5 C. An IPCC Special Report on the impacts of global warming of 1.5 C°. 1, 5. Retrieved 2021 December 12 from https://www.ipcc.ch/site/assets/uploads/sites/2/2019/05/SR15_Citation.pdf es_ES
dc.description.references Ismail Mofizur and Hiroshi Hasegawa (2012). Water Stress. InTech, Rijeka Croatia. es_ES
dc.description.references Jopia A, Zambrano F, Pérez-Martínez W, Vidal-Páez P, Molina J, Mardones F. de la H (2020). Time-series of vegetation indices (VNIR/SWIR) derived from sentinel-2 (A/B) to assess turgor pressure in kiwifruit. ISPRS International Journal of Geo-Information 9:1-18. https://doi.org/10.3390/ijgi9110641 es_ES
dc.description.references Kaya C (2021). Nitrate reductase is required for salicylic acid-induced water stress tolerance of pepper by upraising the AsA-GSH pathway and glyoxalase system. Physiologia Plantarum 172:351-370. https://doi.org/10.1111/ppl.13153 es_ES
dc.description.references Kareem F, Rihan H, Fuller M (2017). The effect of exogenous applications of salicylic acid and molybdenum on the tolerance of drought in wheat. 2017. Agricultural Research & Technology: Open Access Journal 9. https://10.19080/ARTOAJ.2017.09.555768 es_ES
dc.description.references Kabiri R, Naghizadeh M (2015). Exogenous acetylsalicylic acid stimulates physiological changes to improve growth, yield and yield components of barley under water stress condition. Journal of Plant Physiology and Breeding 5(1):35-45. es_ES
dc.description.references Kudlak J, Batistic O, Hashimoto K (2010). Calcium signals: the lead currency of plant information processing. Plant Cell 22:541-563. https://doi.org/10.1105/tpc.109.072686 es_ES
dc.description.references Masson-Delmotte V, Zhai, P, Pörtner H, Roberts D, Skea, J, Shukla PR, Waterfield T (2018). global warming of 1.5 C. An IPCC Special Report on the impacts of global warming of 1.5 C°. 1, 5. Retrieved 2021 December from https://www.ipcc.ch/site/assets/uploads/sites/2/2019/09/IPCC-Special-Report-1.5-SPM_es.pdf es_ES
dc.description.references Magdy M, Mansour F, Farouk E (2017) Evaluation of proline functions in saline conditions. Phytochemistry Review 140. https://doi.org/10.1016/j.phytochem.2017.04.016 es_ES
dc.description.references Molina J, Covarrubias JI (2019). Influence of nitrogen on physiological responses to bicarbonate in a grapevine rootstock. Journal of Soil Science and Plant Nutrition 19:305-312. https://doi.org/10.1007/s42729-019-00030-1 es_ES
dc.description.references Nazar R, Umar S, Khan NA, Sareer OS (2015). Salicylic acid supplementation improves photosynthesis and growth in mustard through changes in proline accumulation and ethylene formation under drought stress. South African Journal of Botany 98:84-94. https://doi.org/10.1016/j.sajb.2015.02.005 es_ES
dc.description.references Nakano Y, Asada K (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiology 22(5):867-880. https://doi.org/10.1093/oxfordjournals.pcp.a076232 es_ES
dc.description.references Neuberg M, Pavlíková D, Pavlík M, Balík J (2010). The effect of different nitrogen nutrition on proline and asparagine content in plant. Plant Soil Environment 56:305-311. https://doi.org/10.17221/47/2010-PSE es_ES
dc.description.references Noctor G, Reichheld J, Foyer CH (2018). ROS-related redox regulation and signaling in plants. In: Seminars in Cell & Developmental Biology 80:3-12. Academic Press. https://doi.org/10.1016/j.semcdb.2017.07.013 es_ES
dc.description.references Okuma E, Hossain MA, Munemasa S, Uraji M, Nakamura Y, Mori IC, Murata Y (2011). Involvement of extracellular oxidative burst in salicylic acid-induced stomatal closure in Arabidopsis. Plant, Cell & Environment 434-443. https://doi.org/10.1111/j.1365-3040.2010.02253.x es_ES
dc.description.references Osakabe, Y, Osakabe K, Shinozaki K, Tran LS (2014). Response of plants to water stress. Frontiers in Plant Science 5:86. https://doi.org/10.3389/fpls.2014.00086 es_ES
dc.description.references Rodrigues L, Emilaine A, Prado R, Oliveira R, De Ferreira, E (2020). Mechanisms of cadmium-stress avoidance by selenium in tomato plants. Ecotoxicology 594-606. https://doi.org/10.1007/s10646-020-02208-1 es_ES
dc.description.references Senaratna T, Touchell D, Bunn E, Dixon K (2000). Acetyl salicylic acid (aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regulation 30:157-161. https://doi.org/10.1023/A:1006386800974 es_ES
dc.description.references Sun Y, Wang C, Chen HYH, Ruan H (2020). Response of plants to water stress: A meta-analysis. Frontiers in Plant Science 11:1-8. https://doi.org/10.3389/fpls.2020.00978 es_ES
dc.description.references Vargas-Ortiz E, Ramírez-Tobias HM, González-Escobar JL, Gutiérrez-García AK, Bojórquez-Velázquez E, Espitia-Rangel E, Barba de la Rosa AP (2021). Biomass, chlorophyll fluorescence, and osmoregulation traits let differentiation of wild and cultivated Amaranthus under water stress. Journal of Photochemistry and Photobiology B: Biology 220. https://doi.org/10.1016/j.jphotobiol.2021.112210 es_ES
dc.description.references Walinga I, Van Vark W, Houba VJG, Van der Lee JJ (1989). Soil and plant analysis. Plant. Part 7. es_ES
dc.description.references Weimberg R (1987). Solute adjustments in leaves of two species of wheat at two different stages of growth in response to salinity. Physiologia Plantarum 70:381-388. https://doi.org/10.1111/j.1399-3054.1987.tb02832.x es_ES
dc.description.references Yang D, Ni R, Yang S, Pu Y, Qian M, Yang, Y (2021). Functional characterisation of the Stipa purpurea P5CS gene under drought stress conditions. International Journal of Molecular Sciences 22(17):9599. https://doi.org/10.3390/ijms22179599 es_ES
dc.description.references Zeinali A, Moradi P (2015). The effects of humic acid and ammonium sulfate foliar spraying and their interaction effects on the qualitative and quantitative yield of native garlic (Allium sativum L). Journal of Applied Environmental and Biological Sciences 4:205-211. es_ES
dc.description.references Zhang L, Li S, Zhang H, Liang Z (2007). Nitrogen rates and water stress effects on production, lipid peroxidation and antioxidative enzyme activities in two maize (Zea mays L.) genotypes. Journal of Agronomy and Crop Science 193(6):387-397. https://doi.org/10.1111/j.1439-037X.2007.00276.x es_ES
dc.description.references Zhang T, Yang J, Sun Y, Kang Y, Yang J, Qi Z (2018). Calcium deprivation enhances non-selective fluid-phase endocytosis and modifies membrane lipid profiles in Arabidopsis roots. Journal of Plant Physiology 226:22-30. https://doi.org/10.1016/j.jplph.2018.04.002 es_ES
dc.description.references Zhishen J, Mengcheng T, Jianming W (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry 64:555-559. es_ES
dc.subject.ods 02.- Poner fin al hambre, conseguir la seguridad alimentaria y una mejor nutrición, y promover la agricultura sostenible es_ES
dc.subject.ods 15.- Proteger, restaurar y promover la utilización sostenible de los ecosistemas terrestres, gestionar de manera sostenible los bosques, combatir la desertificación y detener y revertir la degradación de la tierra, y frenar la pérdida de diversidad biológica es_ES
upv.costeAPC 726 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem