- -

An Open-Set Recognition and Few-Shot Learning Dataset for Audio Event Classification in Domestic Environments

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

An Open-Set Recognition and Few-Shot Learning Dataset for Audio Event Classification in Domestic Environments

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Naranjo-Alcaraz, Javier es_ES
dc.contributor.author Perez-Castanos, Sergi es_ES
dc.contributor.author Zuccarello, Pedro es_ES
dc.contributor.author Torres, Ana M. es_ES
dc.contributor.author López Monfort, José Javier es_ES
dc.contributor.author Ferri, Francesc J. es_ES
dc.contributor.author Cobos, Maximo es_ES
dc.date.accessioned 2023-10-02T18:01:50Z
dc.date.available 2023-10-02T18:01:50Z
dc.date.issued 2022-12 es_ES
dc.identifier.issn 0167-8655 es_ES
dc.identifier.uri http://hdl.handle.net/10251/197443
dc.description.abstract [EN] The problem of training with a small set of positive samples is known as few-shot learning (FSL). It is widely known that traditional deep learning algorithms usually show very good performance when trained with large datasets. However, in many applications, it is not possible to obtain such a high num- ber of samples. This paper deals with the application of FSL to the detection of specific and intentional acoustic events given by different types of sound alarms, such as door bells or fire alarms, using a limited number of samples. These sounds typically occur in domestic environments where many events corre- sponding to a wide variety of sound classes take place. Therefore, the detection of such alarms in a practi- cal scenario can be considered an open-set recognition (OSR) problem. To address the lack of a dedicated public dataset for audio FSL, researchers usually make modifications on other available datasets. This pa- per is aimed at providing the audio recognition community with a carefully annotated dataset1 for FSL in an OSR context comprised of 1360 clips from 34 classes divided into pattern sounds and unwanted sounds. To facilitate and promote research on this area, results with state-of-the-art baseline systems based on transfer learning are also presented. es_ES
dc.description.sponsorship This work was supported by the EU Horizon 2020 programme [grant No 779158] . Grants DIN2018-009982, PTQ-17-09106, RTI2018-097045-B-C21/C22 funded by MCIN/AEI/10.13039/50110 0 011033, the latter also by "ERDF A way of making Europe ". Grants TED2021-131003B-C21/C22 funded by MCIN/AEI/10.13039/50110 0 011033 and by the "EU Union NextGenerationEU/PRTR ". Grants AICO/2020/154 and AEST/2020/012, funded by GVA. The authors acknowledge also the Artemisa computer resources funded by the EU ERDF and Comunitat Valenciana, and the technical support of IFIC (CSIC-UV) . Authors J. Naranjo, S. Perez and P. Zuccarello were working at Visualfy when this work was done, but they are now with the Instituto Tecnologico de Informatica (ITI) , Tyris AI and ITI, respectively. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Pattern Recognition Letters es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Audio Dataset es_ES
dc.subject Classification es_ES
dc.subject Few-Shot Learning es_ES
dc.subject Machine Listening es_ES
dc.subject Open-set Recognition es_ES
dc.subject Sound Processing es_ES
dc.subject.classification TEORÍA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title An Open-Set Recognition and Few-Shot Learning Dataset for Audio Event Classification in Domestic Environments es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.patrec.2022.10.019 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-097045-B-C21/ES/AUDIO ESPACIAL INTELIGENTE: ANALISIS Y MONITORIZACION/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//AICO%2F2020%2F154//SONO-TEMATIC Técnicas de aprendizaje automático aplicadas al análisis computacional de escenas sonoras y la síntesis de entornos inmersivos/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-097045-B-C22/ES/AUDIO ESPACIAL INTELIGENTE: SINTESIS Y PERSONALIZACION/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MCIU//DIN2018-009982//Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TED2021-131003B-C21//Proyectos Estratégicos Orientados a la Transición Ecológica y a la Transición Digital. Convocatoria 2021/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/779158/EU es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//PTQ-17-09106//Ayudas para contratos Torres Quevedo (PTQ)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TED2021-131003B-C22//Proyectos Estratégicos Orientados a la Transición Ecológica y a la Transición Digital. Convocatoria 2021/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CIUCSD//AEST%2F2020%2F012//Subvenciones para la realización de estancias de personal investigador doctor en empresas de la Comunitat Valenciana/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació es_ES
dc.description.bibliographicCitation Naranjo-Alcaraz, J.; Perez-Castanos, S.; Zuccarello, P.; Torres, AM.; López Monfort, JJ.; Ferri, FJ.; Cobos, M. (2022). An Open-Set Recognition and Few-Shot Learning Dataset for Audio Event Classification in Domestic Environments. Pattern Recognition Letters. 164:40-45. https://doi.org/10.1016/j.patrec.2022.10.019 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.patrec.2022.10.019 es_ES
dc.description.upvformatpinicio 40 es_ES
dc.description.upvformatpfin 45 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 164 es_ES
dc.relation.pasarela S\489079 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Ministerio de Ciencia, Innovación y Universidades es_ES
dc.contributor.funder Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital, Generalitat Valenciana es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem